• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tunable THz radiation from 3D topological insulator

Bioengineer by Bioengineer
November 2, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bismuth telluride can efficiently radiate linearly and circularly polarized terahertz waves, with adjustable chirality and polarization

IMAGE

Credit: Haihui Zhao et al., doi 10.1117/1.AP.2.6.066003

Terahertz (THz) waves, located between the millimeter and far-infrared frequency ranges, are an electromagnetic frequency band that is as-yet incompletely recognized and understood. Xiaojun Wu of Beihang University leads a group of researchers actively seeking ways to understand, generate, and control THz radiation. Wu notes that THz waves have great potential for expanding real applications–from imaging to information encryption–but the development of THz science and technology has been hindered by a lack of sufficiently efficient sources.

Wu’s research group has been investigating a three-dimensional topological insulator of bismuth telluride (Bi2Te3) as a promising basis for an effective THz system. They recently systematically investigated THz radiation from Bi2Te3 nanofilms driven by femtosecond laser pulses. Their report published in Advanced Photonics demonstrates efficient generation of chiral THz waves with an arbitrarily adjustable polarization state that allows control of chirality, ellipticity, and principal axis.

According to Wu, bismuth telluride is a great candidate for future on-chip topological insulator-based terahertz systems; it has already exhibited excellent prospects in THz emission, detection, and modulation. The well-studied topological insulator presents a special spin-momentum locked surface state, which can also be accurately adjusted by various factors such as the number of atomic layers. Wu explains that this kind of THz source can efficiently radiate linearly and circularly polarized THz waves, with adjustable chirality and polarization. This will enable the development of THz science and applications in such areas as ultrafast THz opto-spintronics, polarization-based THz spectroscopy and imaging, THz biosensing, line-of-sight THz communications, and information encryption.

Generation and manipulation of linearly polarized THz waves

Wu’s group systematically investigated the THz radiation from topological insulator Bi2Te3 nanofilms driven by femtosecond laser pulses. They found that the linearly polarized THz wave originates from the shift current formed by the ultrafast redistribution of the electron density between Bi-Te atoms in Bi2Te3 after the topological insulator is excited by the linearly polarized pump light. The ultrafast shift current contributes to the linearly polarized THz radiation. Due to the lattice characteristics of Bi2Te3, the radiated THz waves are always linearly polarized with a three-fold rotation angle, depending on the sample azimuthal angle. This reliability makes it very convenient to arbitrarily manipulate the THz wave polarization angle by controlling the incident laser in the polarization direction.

Generation and manipulation of circularly polarized THz waves

Wu explains that, in order to produce circularly polarized THz pulses, it was necessary to simultaneously tune the pump laser polarization and the sample azimuthal angle. When the sample azimuthal angle was fixed, the researchers also obtained elliptical THz beams with various ellipticities and principle axes, due to the combination of a linear photogalvanic effect (LPGE) and a circular photogalvanic effect (CPGE), which is caused by the intrinsic time delay between the LPGE-driven and CPGE-driven THz electric field components. Within the scope of their expectations, they were able to manipulate the chirality of the emitted THz waves by varying the incident laser helicity.

Wu explains, “Helicity-dependent current is the critical reason why we can obtain spin-polarized THz pulses because we can continuously tune the magnitude and polarity of it by changing the helicity.” Specific discussion of the implementation and control of circularly polarized THz radiation is included in their paper.

The authors are optimistic that their work will help further collective understanding of femtosecond coherent control of ultrafast spin currents in light-matter interaction and will also provide an effective way to generate spin-polarized THz waves. Wu notes that the manipulation of polarization is a step toward the goal of tailoring twisted THz waves efficiently at the source.

###

Read the open access research article: Haihui Zhao et al., “Generation and manipulation of chiral terahertz waves in the three-dimensional topological insulator Bi2Te3,” Adv. Photon. 2(6), 066003 (2020), doi 10.1117/1.AP.2.6.066003.

Media Contact
Daneet Steffens
[email protected]

Original Source

https://spie.org/news/tunable-thz-radiation-from-3d-topological-insulator

Related Journal Article

http://dx.doi.org/10.1117/1.AP.2.6.066003

Tags: Electrical Engineering/ElectronicsOpticsResearch/DevelopmentTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Sensing suns

February 28, 2021
IMAGE

Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI

February 27, 2021

When foams collapse (and when they don’t)

February 27, 2021

UTA researcher explores effects of trauma at the cellular, tissue levels of the brain

February 26, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    644 shares
    Share 258 Tweet 161
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Public HealthCell BiologyGeneticsMaterialsChemistry/Physics/Materials SciencesBiologyEcology/EnvironmentTechnology/Engineering/Computer SciencecancerMedicine/HealthClimate ChangeInfectious/Emerging Diseases

Recent Posts

  • Sensing suns
  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In