• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Tuberculosis: Commandeering a bacterial 'suicide' mechanism

Bioengineer by Bioengineer
February 18, 2019
in Immunology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Antonio Peixoto, Claude Gutierrez, and Olivier Neyrolles | IPBS | CNRS/UPS


The bacteria responsible for tuberculosis can be killed by a toxin they produce unless it is neutralized by an antidote protein. The European team of scientists behind this discovery is coordinated by researchers from the Institute of Pharmacology and Structural Biology (IPBS–CNRS/UPS) and the European Molecular Biology Laboratory (EMBL). (1) Their findings are published in Molecular Cell (February 18, 2019). The team is now seeking to appropriate this “suicide” mechanism for therapeutic purposes.

Bacteria synthesize molecules that are toxic to themselves. When exposed to a harsh environment, these toxins slow the growth of the bacterial population until more favorable conditions develop. Some toxins even kill the bacteria that produced them. The biological purpose of this “suicide” is still a subject of debate. It may function as an antiviral defense mechanism, killing infected bacteria to spare uninfected neighbors. Or, when faced with nutrient scarcity, it may serve to “sacrifice” a few for the benefit of the many. Under normal conditions, bacteria produce antidote proteins that neutralize the toxins.

The researchers have identified one such “suicide toxin,” called MbcT, in the bacteria responsible for tuberculosis, Mycobacterium tuberculosis. If not thwarted by its antitoxin, MbcA, the MbcT toxin will kill M. tuberculosis by breaking down its store of NAD–a small molecule critical to sustaining life–through a newly identified reaction.

The team of researchers led by Olivier Neyrolles, a CNRS researcher at the IPBS, has demonstrated the therapeutic potential of this toxin. They infected human and mouse cells with a strain of M. tuberculosis lacking this toxin/antitoxin system–but in which they could artificially trigger production of the MbcT toxin. Toxin activation drastically reduced the number of bacteria infecting the cells and increased the mouse survival rate.

These findings pave the way for a novel treatment targeting tuberculosis, which remains one of the top ten causes of death worldwide. And the antibiotic resistance developed by certain strains of Mycobacterium tuberculosis only underscores the urgency. The EMBL researchers have already determined the 3D structure of the MbcT-MbcA complex, and the different teams are now striving to identify compounds that can free the toxin from the antidote with which it is coupled. These molecules may also help fight other infectious diseases because analogous toxin/antitoxin systems have been detected in other pathogenic bacteria.

###

The French National Research Agency (ANR), the Fondation pour la Recherche Médicale (FRM), and the Fondation Bettencourt Schueller all helped fund these investigations.

Notes:
(1) Team jointly led by researchers from the IPBS (CNRS/UPS) and the EMBL (Hamburg, Germany), and including researchers from the Francis Crick Institute (United Kingdom) and the Laboratory of Microbiology and Molecular Genetics (CNRS/UPS) at the Center for Integrative Biology of Toulouse (CNRS/UPS).

Media Contact
Veronique Etienne
[email protected]
33-144-965-137

Original Source

http://www.cnrs.fr/en/tuberculosis-commandeering-bacterial-suicide-mechanism

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2019.01.028

Tags: BacteriologyBiologyImmunology/Allergies/AsthmaInfectious/Emerging Diseases
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    128 shares
    Share 51 Tweet 32
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Analyzing Public Data Uncovers Air Quality Impacts of the 2025 Los Angeles Wildfires

Creating Strained Para-Cyclophanes via [5,5]-Sigmatropic Shift

MUC1-C Links APOBEC3 and Retrovirus Activation in NSCLC

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.