• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

‘Tsunami’ on a silicon chip: a world first for light waves

Bioengineer by Bioengineer
July 3, 2019
in Science
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Sydney-Singapore team manipulates soliton photonic waves on a silicon chip

IMAGE

Credit: Singapore University of Technology and Design

A tsunami holds its wave shape over very long distances across the ocean, retaining its power and ‘information’ far from its source.

In communications science, retaining information in an optic fibre that spans continents is vital. Ideally, this requires the manipulation of light in silicon chips at the source and reception end of the fibre without altering the wave shape of the photonic packet of information. Doing so has eluded scientists until now.

A collaboration between the University of Sydney Nano Institute and Singapore University of Technology and Design has for the first time manipulated a light wave, or photonic information, on a silicon chip that retains its overall ‘shape’.

Such waves – whether a tsunami or a photonic packet of information – are known as ‘solitons’. The Sydney-Singapore team has for the first time observed ‘soliton’ dynamics on an ultra-silicon-rich nitride (USRN) device fabricated in Singapore using state-of-the-art optical characterisation tools at Sydney Nano.

This foundational work, published today in Laser & Photonics Reviews, is important because most communications infrastructure still relies on silicon-based devices for propagation and reception of information. Manipulating solitons on-chip could potentially allow for the speed up of photonic communications devices and infrastructure.

Ezgi Sahin, a PhD student at SUTD conducted the experiments with Dr Andrea Blanco Redondo at the University of Sydney.

“The observation of complex soliton dynamics paves the way to a wide range of applications, beyond pulse compression, for on-chip optical signal processing,” Ms Sahin said. “I’m happy to be a part of this great partnership between the two institutions with deep collaboration across theory, device fabrication and measurement.”

Co-author of the study and Director of Sydney Nano, Professor Ben Eggleton, said: “This represents a major breakthrough for the field of soliton physics and is of fundamental technological importance.

“Solitons of this nature – so-called Bragg solitons – were first observed about 20 years ago in optical fibres but have not been reported on a chip because the standard silicon material upon which chips are based constrains the propagation. This demonstration, which is based on a slightly modified version of silicon that avoids these constraints, opens the field for an entirely new paradigm for manipulating light on a chip.”

Professor Dawn Tan, a co-author of the paper at SUTD, said: “We were able to convincingly demonstrate Bragg soliton formation and fission because of the unique Bragg grating design and the ultra-silicon-rich nitride material platform (USRN) we used. This platform prevents loss of information which has compromised previous demonstrations.”

Solitons are pulses that propagate without changing shape and can survive collisions and interactions. They were first observed in a Scottish canal 150 years ago and are familiar in the context of tsunami waves, which propagate thousands of kilometers without changing shape.

Optical soliton waves have been studied since the 1980s in optical fibres and offer enormous promise for optical communication systems because they allow data to be sent over long distances without distortion. Bragg solitons, which derive their properties from Bragg gratings (periodic structures etched in to the silicon substrate), can be studied at the scale of chip technology where they can be harnessed for advanced signal processing.

They are called Bragg solitons after Australian-born Lawrence Bragg and his father William Henry Bragg, who first discussed the concept of Bragg reflection in 1913 and went on to win the Nobel Prize in Physics. They are the only father and son pair to have won Nobel Prizes.

Bragg solitons were first observed in 1996 in Bragg gratings in optical fibres. This was demonstrated by Professor Eggleton while he was working on his PhD at Bell Labs.

The silicon-based nature of the Bragg grating device also ensures compatibility with complementary metal oxide semiconductor (CMOS) processing. The ability to reliably initiate soliton compression and fission allows ultrafast phenomena to be generated with longer pulses than previously required. The chip-scale miniaturisation also advances the speed of optical signal processes in applications necessitating compactness.

###

Media contact:

Marcus Strom | [email protected] | +61 423 982 485

Elissa Blake | [email protected] | +61 408 565 604

Download an uncorrected version of the paper, illustrations and photographs at this link.

Funding declaration

Ezgi Sahin acknowledges scholarship funding Singapore International Graduate Award (SINGA) from A*STAR and thanks the Institute for Photonics and Optical Science (IPOS), the University of Sydney Nano Institute and the School of Physics at the University of Sydney for hosting her to conduct the experiments with Andrea Blanco Redondo. Dawn Tan acknowledges the support of the National Research Foundation Competitive Research Grant, MOE ACRF Tier 2 grant, SUTD – MIT International Design center, Digital Manufacturing and DesignGrant and the National Research Foundation, Prime Minister’s Office, Singapore, under its Medium Sized Centre Program. Ben Eggleton acknowledges the support of the Australian Research Council (ARC) Laureate Fellowship (FL12010)

Media Contact
Marcus Strom
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/lpor.201900114

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesOpticsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Linking Bone Formation and Blood Vessel Growth through Interlineage Paracrine Signaling

World Models Power End-to-End Accident Prediction

Deep Sequencing Reveals Plasmodium vivax Lineages

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.