• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Trapping tiny particles: A versatile tool for nanomanipulation

Bioengineer by Bioengineer
July 27, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: OIST

Nanoparticles are tiny. At just 1/1000th of a millimeter, they’re impossible to see with the naked eye. But, despite being small, they’re extremely important in many ways. If scientists want to take a close look at DNA, proteins, or viruses, then being able to isolate and monitor nanoparticles is essential.

Trapping these particles involves tightly focusing a laser beam to a point that produces a strong electromagnetic field. This beam can hold particles just like a pair of tweezers but, unfortunately, there are natural restrictions to this technique. Most notable are the size restrictions – if the particle is too small, the technique won’t work. To date, optical tweezers have been unable to hold particles like individual proteins, which are only a few nanometers in diameter.

Now, due to recent advances in nanotechnology, researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a technique for precise nanoparticle trapping. In this study, they overcame the natural restrictions by developing optical tweezers based on metamaterials – a synthetic material with specific properties that do not occur naturally. This was the first time that this kind of metamaterial had been used for single nanoparticle trapping.

“Being able to manipulate or control these small particles is crucial for advances in biomedical science,” explained Dr. Domna Kotsifaki, staff scientist in the OIST Unit and first author of the research paper published in Nano Letters. Dr. Kotsifaki went on to explain that trapping these nanoparticles could enable researchers to see the progression of cancer, to develop effective drugs, and to advance biomedical imaging. “The potential applications for society are far-reaching.”

This novel technique has two sought after abilities – it can stably trap the nanoparticles using low intensity laser power and it can be used for a long period whilst avoiding light damage to the sample. The reason for this was the metamaterial that the researchers chose to use. This metamaterial is highly sensitive to changes in the surrounding environment and, therefore, allows for the use of low intensity laser power.

“Metamaterials have unusual properties due to their unique design and structure. But this makes them very useful. Over the last few years, a whole new era of devices with novel concepts and potential applications has been created from them,” explained Dr. Kotsifaki. “From the metamaterial, we fabricated an array of asymmetric split rings using a beam of ions – tiny, charged particles – on a 50 nm gold film.”

To test whether the technique worked, the research group illuminated the device with near infrared light and trapped 20 nm polystyrene particles at certain regions on it.

Dr. Kotsifaki and colleagues were looking for the trap stiffness, which is a measurement of trapping performance. “The achieved trapping performance was several times better than that of conventional optical tweezers and the highest reported to date as far as we know,” she explained. “As the first group to use this device for precision nanoparticle trapping, it has been rewarding to contribute to such progress in this research area.”

The research team now plans to tweak their device to see if these tweezers can be used in real-world applications. Specifically, in the future, this device could be utilized to create lab-on-chip technologies, which are hand-held, diagnostic tools that can provide results efficiently and economically. Alongside its applications in biomedical science, this research has provided new and fundamental insights into nanotechnology and light behavior at the nanoscale.

As well as Dr. Domna Kotsifaki, the research group consisted of Professor Síle Nic Chormaic, who leads the OIST Unit, and staff scientist, Dr. Viet Giang Truong.

###

Media Contact
Tomomi Okubo
[email protected]

Original Source

https://www.oist.jp/news-center/news/2020/7/15/trapping-tiny-particles-versatile-tool-nanomanipulation

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.0c00300

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

3D-Printed Low-Voltage Ciliary Hydrogel Microactuators

3D-Printed Low-Voltage Ciliary Hydrogel Microactuators

January 14, 2026

Integrated Strategies for Bladder Cancer Decision Making

January 14, 2026

Affordable Gold Nanoparticle Platform Enhances Non-Viral Gene Editing

January 14, 2026

Enhancing Plant Science with Bioelectronics in Agriculture

January 14, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    74 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

3D-Printed Low-Voltage Ciliary Hydrogel Microactuators

Integrated Strategies for Bladder Cancer Decision Making

Affordable Gold Nanoparticle Platform Enhances Non-Viral Gene Editing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.