• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Transient contractions’ in urinary bladder may lead to…

Bioengineer by Bioengineer
February 9, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Researchers at the University of Vermont College of Medicine have made a discovery that helps explain how we know when to empty our bladders and may lead to new therapeutic interventions for bladder dysfunction.

Sensing bladder fullness is seemingly simple. The kidneys send waste and excess water to the bladder, and upon reaching its filling threshold, the bladder tells the central nervous system that it's time to void. However, a team led by Mark T. Nelson, PhD, University Distinguished Professor and Chair of the Department of Pharmacology, found that in addition to filling pressure, the process involves what they call "non-voiding transient contractions (TCs)" of the urinary bladder smooth muscle. The study, "Transient contractions of urinary bladder smooth muscle are drivers of afferent nerve activity during filling," by Thomas J. Heppner et al., appears in the April issue of The Journal of General Physiology.

TCs have a central role in sensing pressure and conveying this information to afferent (sensory) nerves, the researchers note. But not only do TCs provide information about when the bladder is full, they alert us when conditions are ripe for the most efficient voiding experience. This, they conclude, means that TCs could represent a novel target for therapeutic intervention in urinary bladder dysfunction. "The presence or absence of these contractions, and how fast the contractions happen, can contribute to bladder under-activity or over-activity–which are both bad," Dr. Nelson said.

Using an ex vivo mouse bladder preparation, Nelson and his colleagues, Drs. Nathan Tykocki, Tom Heppner and David Hill-Eubanks explored the relative contributions of filling pressure and TC-induced pressure transients to sensory nerve stimulation. They observed that, for a given increase in pressure, TCs evoked an approximately 10-fold greater increase in sensory nerve activity than did the same increase in filling pressure. They concluded that TCs are responsible for a predominant share of bladder sensory output at normal bladder pressures.

Although filling pressure did not affect the frequency of TCs, it did increase the rate at which they reached their maximum pressure (rate of rise). This latter property reflects a change in the length-tension relationship of detrusor smooth muscle, an important biophysical property that determines how efficiently the muscle will contract. "This meant that the rate of rise of the TC tells the brain not only how full the bladder is, but also if the bladder muscle can contract sufficiently for normal voiding," Dr. Nelson said. In addition to this, they found that inhibiting either small- or large-conductance calcium-activated potassium (SK and BK) channels–both of which are important in helping smooth muscle relax–increased TC amplitude and sensory nerve activity.

"We have known for years that BK channels in urinary bladder smooth muscle cells help determine excitability," Dr. Nelson said. "The more the channels are on, the less excitable the bladder smooth muscle becomes, the fewer of these transient contractions you have … But if we block SK channels, we get a much bigger burst of sensory nerve outflow. It looks like SK channels are in an interstitial cell type that is involved in sensing this small, but rapid, change in pressure."

The next step, the researchers note, is looking at the mechanism that determines the frequency and rate of rise of TCs. "Transient contractions seem to vary from bladder to bladder," Dr. Nelson said. "At least in our experiments, the frequency is set for that animal or person. It seems like it is fine-tuned, so that you get the optimal response. Our data suggest that other cell types–non-muscle cell types, non-nerve cell types–are playing a role."

###

Heppner et al. et al. 2016. J. Gen. Physiol.

See the abstract here: http://jgp.rupress.org/content/early/2016/03/08/jgp.201511550

About The Journal of General Physiology

The Journal of General Physiology (JGP) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by research-active scientists in conjunction with our in-house scientific editors. JGP provides free online access to many article types immediately, with complete archival content freely available online since the journal's inception. Authors retain copyright of their published works, and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit jgp.org.

Follow us on Twitter at @JGenPhysiol and @RockUPress.

Media Contact

Rory Williams
[email protected]
212-327-8603
@RockUPress

http://www.rupress.org/

Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.