• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Tracing the cosmic origin of complex organic molecules with their radiofrequency footprint

Bioengineer by Bioengineer
August 25, 2020
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists confirm the presence of acetonitrile in a distant interstellar gas cloud using a radio telescope

IMAGE

Credit: Tokyo University of Science

The origin of life on Earth is a topic that has piqued human curiosity since probably before recorded history began. But how did the organic matter that constitutes lifeforms even arrive at our planet? Though this is still a subject of debate among scholars and practitioners in related fields, one approach to answering this question involves finding and studying complex organic molecules (COMs) in outer space.

Many scientists have reported finding all sorts of COMs in molecular clouds–gigantic regions of interstellar space that contain various types of gases. This is generally done using radio telescopes, which measure and record radiofrequency waves to provide a frequency profile of the incoming radiation called spectrum. Molecules in space are usually rotating in various directions, and they emit or absorb radio waves at very specific frequencies when their rotational speed changes. Current physics and chemistry models allow us to approximate the composition of what a radio telescope is pointed at, via analysis of the intensity of the incoming radiation at these frequencies.

In a recent study published in Monthly Notices of the Royal Astronomical Society, Dr Mitsunori Araki from Tokyo University of Science, along with other scientists from across Japan, tackled a difficult question in the search for interstellar COMs: how can we assert the presence of COMs in the less dense regions of molecular clouds? Because molecules in space are mostly energized by collisions with hydrogen molecules, COMs in the low-density regions of molecular clouds emit less radio waves, making it difficult for us to detect them. However, Dr Araki and his team took a different approach based on a special organic molecule called acetonitrile (CH3CN).

Acetonitrile is an elongated molecule that has two independent ways of rotating: around its long axis, like a spinning top, or as if it were a pencil spinning around your thumb. The latter type of rotation tends to spontaneously slow down due to the emission of radio waves and, in the low-density regions of molecular clouds, it naturally becomes less energetic or “cold.”

In contrast, the other type of rotation does not emit radiation and therefore remains active without slowing down. This particular behavior of the acetonitrile molecule was the basis on which Dr Araki and his team managed to detect it. He explains: “In low-density regions of molecular clouds, the proportion of acetonitrile molecules rotating like a spinning top should be higher. Thus, it can be inferred that an extreme state in which a lot of them would be rotating in this way should exist. Our research team was, however, the first to predict its existence, select astronomical bodies that could be observed, and actually begin exploration.”

Instead of going for radio wave emissions, they focused on radio wave absorption. The “cold” state of the low-density region, if populated by acetonitrile molecules, should have a predictable effect on the radiation that originates in celestial bodies like stars and goes through it. In other words, the spectrum of a radiating body that we perceive on Earth as being “behind” a low-density region would be filtered by acetonitrile molecules spinning like a top in a calculable way, before it reaches our telescope on earth. Therefore, Dr Araki and his team had to carefully select radiating bodies that could be used as an appropriate “background light” to see if the shadow of “cold” acetonitrile appeared in the measured spectrum. To this end, they used the 45 m radio telescope of the Nobeyama Radio Observatory, Japan, to explore this effect in a low-density region around the “Sagittarius molecular cloud Sgr B2(M),” one of the largest molecular clouds in the vicinity of the center of our galaxy.

After careful analysis of the spectra measured, the scientists concluded that the region analyzed was rich in acetonitrile molecules rotating like a spinning top; the proportion of molecules rotating this way was actually the highest ever recorded. Excited about the results, Dr Araki remarks: “By considering the special behavior of acetonitrile, its amount in the low-density region around Sgr B2(M) can be accurately determined. Because acetonitrile is a representative COM in space, knowing its amount and distribution though space can help us probe further into the overall distribution of organic matter.”

Ultimately, this study may not only give us some clues about where the molecules that conform us came from, but also serve as data for the time when humans manage to venture outside the solar system.

###

About Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan’s development in science through inculcating the love for science in researchers, technicians, and educators.

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society”, TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today’s most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

About Dr Mitsunori Araki from Tokyo University of Science

Dr Mitsunori Araki earned a PhD in Chemistry from The Graduate University of Advanced Studies, Japan, in 1999. After being a Research Fellow and an Assistant Professor in various universities in Japan, he joined the Tokyo University of Science in 2009 and, since 2014, he has been a Principal Investigator on astrochemistry research projects. His research interests mainly revolve around complex organic molecules in space and his goal is to find new such molecules and clarify their cosmic origin, both through experiments with synthetized molecules in the lab and via direct observations with radio telescopes.

Media Contact
Tsutomu Shimizu
[email protected]

Original Source

https://www.tus.ac.jp/en/mediarelations/archive/20200825_0102.html

Related Journal Article

http://dx.doi.org/10.1093/mnras/staa1754

Tags: AstronomyAstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesComputer SciencePlanets/MoonsSpace/Planetary ScienceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

CagriSema Promotes Rat Weight Loss by Balancing Energy

CagriSema Promotes Rat Weight Loss by Balancing Energy

August 3, 2025
blank

NSUN5 Drives Liver Cancer via m5C-EFNA3 Glycolysis

August 3, 2025

Noradrenaline Boosts Amygdala Memory Precision for Similar Events

August 3, 2025

Rigid Crosslinker Enables Nondestructive Patterned QLEDs

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    48 shares
    Share 19 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CagriSema Promotes Rat Weight Loss by Balancing Energy

NSUN5 Drives Liver Cancer via m5C-EFNA3 Glycolysis

Noradrenaline Boosts Amygdala Memory Precision for Similar Events

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.