• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Towards applications: ultra-low-loss on-chip zero-index materials

Bioengineer by Bioengineer
January 15, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Tian Dong, Jiujiu Liang, Philip Camayd-Muñoz, Yueyang Liu, Haoning Tang, Shota Kita, Peipei Chen, Xiaojun Wu, Weiguo Chu, Eric Mazur, and Yang Li

A refractive index of zero induces a wave vector with zero amplitude and undefined direction. Therefore, light propagating inside a zero-index medium does not accumulate any spatial phase advance, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended super radiance. A promising platform to achieve these applications is an integrated Dirac-cone material that features an impedance-matched zero index. However, although this platform eliminates ohmic losses via its purely dielectric structure, it still entails out-of-plane radiation loss (about 1 dB/μm), restricting the applications to a small scale.

In 2018, Professor Shanhui Fan’s research group at Stanford University designed a low-loss Dirac-cone zero-index material based on symmetry-protected bound states in the continuum (BICs). However, this Dirac cone is consisted of high-order modes, thus it is challenging to homogenize the photonic crystal slab as a bulk zero-index medium.

In a new paper published in Light Science & Application, a team of scientists, led by Professor Yang Li from the Department of Precision Instrument at Tsinghua University, China, Professor Eric Mazur from the John A. Paulson School of Engineering and Applied Sciences at Harvard University, the US, Professor Weiguo Chu from Nanofabrication Laboratory at the National Center for Nanoscience and Technology, China, and co-workers achieved a zero-index design based on a purely dielectric photonic crystal slab (PhC slab). This design supports an accidental Dirac-cone degeneracy of an electric monopole mode and a magnetic dipole mode at the centre of the Brillouin zone. Such low-order mode-based design can be better treated as a homogeneous zero-index medium.

Their design consists of a square array of silicon pillars embedded in silicon dioxide background matrix, featuring an easy fabrication using standard planar processes. To reduce the radiation loss, they model the top and bottom interfaces of a zero-index PhC slab as two partially reflective mirrors to form a Fabry-Pérot (FP) cavity. Then, they adjust the thickness of this FP cavity to induce destructive interference of upward (downward) radiations in the far field. Inside each pillar, there are axially propagating mode(s) with dipole symmetry showing a round-trip phase of an integer multiple of 2π, therefore becoming resonance-trapped modes. The monopole mode does not radiate in the out-of-plane direction because of its intrinsic mode symmetry.

“Our design exhibits an in-plane propagation loss as low as 0.15 dB/mm at the zero-index wavelength. Furthermore, the refractive index is near zero (|neff|

For applications, Yueyang Liu predict: “our on-chip BIC Dirac-cone zero-index PhC slabs provide an infinite coherence length with low propagation loss. This opens the door to applications of large-area zero-index materials in linear and nonlinear optics as well as lasers. For examples, electromagnetic energy tunnelling through a zero-index waveguide with an arbitrary shape, nonlinear light generation without phase mismatch over a long interaction length, and lasing over a large area in a single mode.”

“This work can also serve as an on-chip lab to explore fundamental quantum optics such as efficient generation of entangled photon pairs and collective emission of many emitters. Particularly, because the spatial distribution of Ez in each silicon pillar oscillates between a monopole mode and a dipole mode as time elapses, all the quantum emitters within the pillars will experience the same spatial phase in the monopole half cycle. This significantly alleviates the challenge of precise positioning of quantum emitters in a photonic cavity.” Yueyang Liu added.

###

Media Contact
Yang Li
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00436-y

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.