• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Towards a better understanding of societal responses to climate change

Bioengineer by Bioengineer
March 24, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scholars of archaeology, geography, history and paleoclimatology lay out a new framework for uncovering climate-society interactions

IMAGE

Credit: Degroot et al., 2021

As the signs of today’s human-caused climate change become ever more alarming, research into the ways past societies responded to natural climate changes is growing increasingly urgent. Scholars have often argued that climatic changes plunge communities into crisis and provide the conditions that lead societies to collapse, but a growing body of research shows that the impacts of climate change on past populations are rarely so straightforward.

In a new paper published in Nature, scholars in archaeology, geography, history and paleoclimatology present a framework for research into what they term ‘the History of Climate and Society’ (HCS). The framework uses a series of binary questions to address problems and biases common to HCS and requires researchers to consult or include scholars from a variety of scientific, social scientific and humanistic disciplines.

“We wanted to figure out why so much research in this area is focused on disaster and how we could encourage more research into the strategies that allowed past populations to cope with climate change,” says Dagomar Degroot, associate professor of environmental history at Georgetown University and the study’s first author. “With this framework we hope to help other researchers find more diverse connections between climate and society, which we hope will lead both to a more realistic understanding of the past and a better guide to the future.”

Using the newly developed framework, the researchers put together case studies of societies that adapted to two of the most frequently studied periods of climate change: The Late Antique Little Ice Age of the sixth century and the Little Ice Age of the thirteenth to nineteenth centuries. Although both of these periods imposed hardships on many communities, the case studies revealed that populations adapted by exploiting new opportunities, relying on resilient energy systems, drawing on resources provided by trade, responding effectively to disaster, or by migrating to new environments.

One example of this resilience can be seen in societal responses to climate change in the Eastern Mediterranean under Roman rule. Environmental reconstructions using lake sediments, speleothems and other proxy data show increased winter precipitation beginning in the fifth century and continuing through the Late Antique Little Ice Age. Pollen data and archaeological surface surveys reveal that cereal agriculture and pastoral activities thrived as a result of the increased rainfall, with many settlements increasing in density and area. Regional economic practices allowed goods to circulate between communities easily, bringing the benefits of increased agricultural production to consumers. Meanwhile, elites invested in market-oriented agriculture and financed the construction of dams and other infrastructure that allowed farmers to manage water more effectively.

“The success story of the late Roman Eastern Mediterranean demonstrates that adverse climatic conditions do not necessarily lead to collapse or social hardship. This well-organized and resourceful society was capable of adapting and exploiting the new opportunities,” says Adam Izdebski of the Max Planck Institute for the Science of Human History. “Of course, with the increasing dryness predicted in this part of the world in the 21st century, the adaptation measures required today should be both different and much more ambitious, which further underlines the need to cut CO2 emissions on a massive scale as quickly as possible.”

Although the changes in climate faced by past societies were smaller in magnitude than the changes we now face, these case studies show that communities and societies often adapted and persisted through periods of climatic variability. With a research framework that accounts for the heterogeneous effects of past climate changes and the challenges of interpreting historical sources, the authors hope that future studies into the History of Climate and Society will identify previously overlooked examples of resilience in the past and aid efforts to adapt to the unprecedented global warming that faces societies today.

###

Media Contact
Adam Izdebski
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-021-03190-2

Tags: Agricultural Production/EconomicsAnthropologyArchaeologyClimate ChangeClimate ScienceEarth ScienceHistoryOld WorldPolicy/Ethics
Share12Tweet8Share2ShareShareShare2

Related Posts

Micro- and Nanoplastics Threaten Early-Life Health: Risks

Micro- and Nanoplastics Threaten Early-Life Health: Risks

August 3, 2025
PI-RADS v2.1 Plus Amide Transfer Boosts Detection

PI-RADS v2.1 Plus Amide Transfer Boosts Detection

August 3, 2025

Satellite and AI Unite to Estimate Underwater Sound Speed

August 3, 2025

Advancing Microplastic Quantification with NMR Spectroscopy

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    52 shares
    Share 21 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Micro- and Nanoplastics Threaten Early-Life Health: Risks

PI-RADS v2.1 Plus Amide Transfer Boosts Detection

Satellite and AI Unite to Estimate Underwater Sound Speed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.