• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Toward imperceptible electronics that you cannot see or feel

Bioengineer by Bioengineer
December 14, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Osaka University fabricated ultrathin, flexible, transparent sensors with cross-aligned silver nanowire microelectrodes fabricated using print technique that are scalable and require minimal raw materials

IMAGE

Credit: Osaka University

Osaka, Japan – Transparent electronics–such as head-up displays that allow pilots to read flight data while keeping their eyes ahead of them–improve safety and allow users to access data while in transit. For healthcare applications, the electronics need to not only be cheap and straightforward to fabricate, but also sufficiently flexible to conform to skin. Silver nanowire networks meet these criteria. However, current methods of development create random nanowire alignment that’s insufficient for advanced applications.

In an upcoming study in Advanced Intelligent Systems, researchers from Osaka University have used high-resolution printing to fabricate centimeter-scale cross-aligned silver nanowire arrays, with reproducible feature sizes from 20 to 250 micrometers. As a proof-of-concept for functionality, they used their arrays to detect electrophysiological signals from plants.

The researchers first created a patterned polymer surface to define the subsequent nanowire feature size. Using a glass rod to sweep silver nanowires across the pattern led to either parallel or cross-aligned nanowire networks, depending on the direction of the sweep. Nanowire cross-alignment, alignment within the pattern, and electro-optical properties were impressive.

“The sheet resistance of patterns less than 100 micrometers ranged from 25 to 170 ohms per square, and the visible light transmittance at 550 nanometers was 96% to 99%,” says Teppei Araki, co-senior author. “These values are well-suited for transparent electronics.”

The researchers showed off the utility of their technology by monitoring the electric potential of Brazilian waterweed leaves. Because the nanowire arrays are transparent, the researchers were able to keep the leaf under visual observation while acquiring data over long periods of time. A 2- to 3-micrometer-thick device conformed to the surface of a leaf without causing damage.

“Our microelectrodes-based organic field-effect transistors exhibited excellent multi-fuctionality,” says Tsuyoshi Sekitani, co-senior author. “For example, transparency of 90%, the on-off ratio was ~106, and the leakage current remained stable upon bending at a radius of 8 millimeters.”

Transparent electronics is an emerging technology. It must be simple and inexpensive to mass-produce for biomedicine, civil engineering, agriculture, and other applications that require underlying visual observation. The advance described here is an important step in that direction. The Osaka University researchers plan on making further technical improvements, such as incorporating graphene onto the nanowire’s surface. This will improve the uniformity of the microelectrodes’ sheet resistance. Ultimately, the researchers’ technology will help minimize the raw material input of electronics, and exceed the functionality of conventional non-transparent electronics.

###

The article, “Printable transparent microelectrodes toward mechanically and visually imperceptible electronics,” was published in Advanced Intelligent Systems at DOI: https://doi.org/10.1002/aisy.202000093

The related articles are below:

https://doi.org/10.1088/2058-8585/abc3ca

https://doi.org/10.1002/adma.201902684

Media Contact
Saori Obayashi
[email protected]

Original Source

https://resou.osaka-u.ac.jp/en

Related Journal Article

http://dx.doi.org/10.1002/aisy.20200009

Tags: Electrical Engineering/ElectronicsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Human Milk Vesicles Boost Fat Burning via Mitochondria

Human Milk Vesicles Boost Fat Burning via Mitochondria

August 22, 2025
Gut-Brain Link: How NEC Affects Newborn Brains

Gut-Brain Link: How NEC Affects Newborn Brains

August 22, 2025

Microscopy Reveals Details of Anterior Human Eye

August 22, 2025

Signaling Pathways Drive Cisplatin Resistance via SOX2

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Human Milk Vesicles Boost Fat Burning via Mitochondria

Gut-Brain Link: How NEC Affects Newborn Brains

Microscopy Reveals Details of Anterior Human Eye

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.