• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Total-body PET imaging successfully identifies antibodies up to 30 days after injection

Bioengineer by Bioengineer
March 31, 2020
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Eric Berg, University of California, Davis, CA

Combining 89Zr-labeled antibodies with total-body positron emission tomography (PET) has extended the utility of novel total-body PET scanners, providing suitable images up to 30 days after the initial injection. A new study, published in the March issue of the Journal of Nuclear Medicine, compared four different types of 89Zr-labeled antibodies in preclinical trials, noting excellent consistency for each radiotracer even at very late time points, as well as differences in antibody behavior that are critical to understanding future outcomes of total-body PET in humans.

Monoclonal antibodies–laboratory-developed proteins designed to recognize specific targets–have been used in medicine for decades to treat various diseases, such as cancer, rheumatoid arthritis, multiple sclerosis and cardiovascular disease. Many new engineered monoclonal antibodies have been developed with specific molecular functions in order to achieve a balance between potency and safety in patient treatment.

“The tissue biodistribution of these newly engineered antibodies must be measured in vivo over the course of weeks to select the most appropriate candidates for novel therapeutics and understand how to use them in humans to best effect,” said Simon Williams, PhD, principal scientist, molecular imaging at Genentech, Inc. “In our study, we assessed the feasibility of using a novel total-body PET scanner to image 89Zr-labeled antibodies up to 30 days after injection, allowing for the measurement of tissue biodistribution over a long period of time.”

Researchers prepared four types of 89Zr-labeled antibodies, each with a different chelator-linker, to be compared across 12 young rhesus monkeys (three animals for each chelator-linker combination). Each group of animals received an intravenous injection of one of the four 89Zr-labeled antibodies in the left arm, along with an additional mass dose of unlabeled antibodies in the right arm. The animals were imaged on the day of injection, as well as three, seven, 14, 21 and 30 days after the injection.

Excellent image quality was obtained on the initial total-body PET scans for all four types of 89Zr-labeled antibodies. Results from the 30-day scans showed image quality across the four antibody types sufficient to readily identify activity in the liver, kidneys and upper and lower limb joints. However, significant differences in uptake between the various chelator-linker combinations were noted in the late time point liver, bone, and in whole-body clearance. These differences were determined to be partly related to the stability of the radiolabeled compounds prior to injection.

“The results of this study have two key implications for the field of molecular imaging,” said Simon R. Cherry, PhD, distinguished professor at the University of California, Davis. “First, and most obvious, is that the increase in sensitivity of total-body PET, when compared to conventional PET, enables radiotracers to be followed for a longer period of time thus extending the imaging window. Using 89Zr as the radiolabel, this allows the assessment of slow biological processes and the ability to determine the ultimate fate of agents introduced into the body over a one-month timeframe.”

He continued, “Second, studies with 89Zr can be conducted with much lower injected doses of radioactivity. The late time point total-body imaging conducted in this study clearly demonstrates that acceptable quality imaging with 89Zr can be accomplished when there is as little as 1/100th of the activity remaining in the subject. This paves the way for broad and repeat use of 89Zr-radiolabeled tracers in patients with extremely low effective doses.”

The authors of “Total-Body PET and Highly Stable Chelators Together Enable Meaningful 89Zr-Antibody PET Studies up to 30 Days After Injection” include Eric Berg, Department of Biomedical Engineering, University of California-Davis, Davis, California; Herman Gill, Jan Marik, Annie Ogasawara and Simon Williams, Department of Biomedical Imaging, Genentech Inc., South San Francisco, California; Guus van Dongen and DaniĆ«lle Vugts, Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam, The Netherlands; Simon R. Cherry, Department of Biomedical Engineering, University of California-Davis, Davis, California, and Department of Radiology, School of Medicine, University of California-Davis, Davis, California; and Alice F. Tarantal, Department of Pediatrics and Department of Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California-Davis, Davis, California.

###

Please visit the SNMMI Media Center for more information about molecular imaging and precision imaging. To schedule an interview with the researchers, please contact Rebecca Maxey at (703) 652-6772 or [email protected]. Current and past issues of the Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Journal of Nuclear Medicine (JNM) is the world’s leading nuclear medicine, molecular imaging and theranostics journal, accessed close to 10 million times each year by practitioners around the globe, providing them with the information they need to advance this rapidly expanding field.

JNM is published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging–precision medicine that allows diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes. For more information, visit http://www.snmmi.org.

Media Contact
Rebecca Maxey
[email protected]

Original Source

https://www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=33569

Related Journal Article

http://dx.doi.org/10.2967/jnumed.119.230961

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Prescribed Opioid Painkillers During Pregnancy Unlikely to Raise Autism or ADHD Risk, Study Finds

September 16, 2025

IU Researchers Find No Link Between Prenatal Opioid Pain Medication and Increased Autism or ADHD Risk

September 16, 2025

AI-Enhanced CRISPR Promises Accelerated Gene Therapy Development, Stanford Medicine Study Reveals

September 16, 2025

$1.7M Department of Defense Grant Launches Virtual Cancer Center to Advance Military Health Research

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Approach Enhances Precision of Machine-Learned Potentials for Catalysis Simulation

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

New Study Reveals the Science Behind Exercise and Weight Loss

  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.