• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Tobacco use makes precancerous cells that fertilize cancer growth

Bioengineer by Bioengineer
April 1, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tobacco use causes a field of precancerous cells, increasing the risk of developing head & neck cancer. But exactly how this precancerous field influences cancer has been often overlooked. Now a University of Colorado Cancer Center study presented at the American Association for Cancer Research (AACR) Annual Meeting 2019 offers an exciting idea: Maybe these precancerous cells “fertilize” nearby cells with cancerous changes to grow and resist therapy.

“We wanted to understand how these precancerous cells may impact neighboring cancer,” says Christian Young, PhD, research instructor at CU Cancer Center and the study’s senior author. The current study explores this communication between precancerous and cancer cells in the context of an enzyme called PI3K.

The enzyme PI3K is activated in many or even most cancers, with some researchers considering PI3K over-activation an essential feature driving the disease. Attractively, PI3K is a “kinase” and the class of drugs known as kinase inhibitors has proven effective against a host of cancer types, for example erlotinib against EGFR+ cancers and crizotinib against ALK+ cancers. Kinase inhibitors have been developed against PI3K as well, and by and large they do a lovely job of killing cancer cells in dishes. The ongoing question has been why PI3K inhibitors do not necessarily work in patients – what are cancer cells doing to resist this therapy that should kill them?

The current study offers an intriguing hint: “These cancer cell lines in culture are sensitive to PI3K inhibition, but when you put them next to precancerous cells, they become resistant,” Young says.

To explore this observation, Young and colleagues including first author Khoa Nguyen, an undergraduate student at CU Boulder, grew head and neck cancer cells in the same dish as precancerous cells (called NOK cells), and then hit the cells, alone and together, with PI3K inhibitors. Cancer cells grown with NOK cells grew faster and resisted PI3K inhibition compared with cancer cells grown alone. When the researchers grew NOK cells alone, then removed the cells, and “fertilized” cancer cells with the culture medium in which NOK cells had grown, they saw similar cancer cell growth and PI3K inhibitor resistance.

Additionally, the NOK cells were stimulating cancer stem cell-like features in the recipient cancer cells. This means that in addition to resisting PI3K therapy, cancer cells that sit alongside precancerous cells may themselves become more dangerous, for example, more able to restart the disease.

“What this means is that some properties of cancer cells may not necessarily be intrinsic. In our study, cancer cells were given some of their cancer-like and stem cell-like properties by nearby, precancerous cells,” Young says.

Continuing the line of study, Young and his team asked what these precancerous cells were giving to head and neck cancer cells that allowed them to resist PI3K therapy and gain cancer stem cell-like traits. Using the SomaScan proteomics platform at the CU Cancer Center Microarray Shared Resource, the team was able to analyze more than 1,300 proteins found in dishes in which NOK cells were grown. What they found is a dramatic increase in EGFR ligands – think of PI3K like an engine driving cancer growth. EGFR is another engine that can work alongside PI3K. In this analogy, EGFR ligands are like fuel, allowing cancer cells, in the absence of PI3K, to power their growth and survival through the engine of EGFR instead.

“It was the precancerous cells that were providing this fuel,” Young says.

Continuing work is moving Young’s basic science into mouse models of head and neck cancer. Eventually, the goal may be to inhibit EGFR along with PI3K, perhaps negating the EGFR escape route that precancerous cells seem to be providing to cancer cells.

###

Media Contact
Garth Sundem
[email protected]
https://coloradocancerblogs.org/aacr-tobacco-use-makes-precancerous-cells-that-fertilize-cancer-growth/

Tags: BiologycancerEnvironmental HealthGeneticsHealth ProfessionalsMedicine/HealthPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Frailty and Malnutrition Impact Pneumonia Severity in Vaccinated Elderly

December 21, 2025

Examining Flood Vulnerability and Evacuation Challenges

December 21, 2025

Fruquintinib and Sintilimab Treat Advanced Endometrial Cancer

December 21, 2025

Reassessing Dissociated Memories During Psilocybin Therapy

December 21, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Frailty and Malnutrition Impact Pneumonia Severity in Vaccinated Elderly

Examining Flood Vulnerability and Evacuation Challenges

Revolutionary Neural Network Tackles Hepatitis C Dynamics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.