• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, October 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

To spread or slide? Scientists uncover how foams are spread on surfaces

Bioengineer by Bioengineer
July 29, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have uncovered the physics behind how foams are spread on surfaces. Balls of foam placed on a flat substrate were scraped across with a plate and observed. They identified different patterns which strongly depend on the scraping speed, governed by competing physical phenomena. Their findings apply to all kinds of soft materials that need to be spread evenly on surfaces, from mayonnaise on bread to insulation on walls.

Different foam patterns depending on plate speed.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have uncovered the physics behind how foams are spread on surfaces. Balls of foam placed on a flat substrate were scraped across with a plate and observed. They identified different patterns which strongly depend on the scraping speed, governed by competing physical phenomena. Their findings apply to all kinds of soft materials that need to be spread evenly on surfaces, from mayonnaise on bread to insulation on walls.

 

Whether it be shaving foam, insulating foam in walls, or margarine on toast, the spreading of soft materials on flat surfaces is an important process, both from a practical, everyday point of view and the optimization of industrial processes. Yet surprisingly little is known about the spreading behavior of foams, particularly when it comes to how a flat blade or plate can scrape it across the surface into a layer.

This inspired researchers led by Professor Rei Kurita from Tokyo Metropolitan University to take a closer look at what’s going on. They created small domes of detergent foam on a flat surface and scraped them across with an acrylic plate, taking care to keep the distance between the plate and the surface fixed. The whole process was observed in depth with a video camera. Curiously, they discovered that the way in which the foam spreads changes completely when the speed of the plate is varied, and how much affinity the liquid in the foam has for the surface, i.e., whether it’s hydrophilic (attracts water) or hydrophobic (repels water).

On a hydrophobic surface, at low scraping speeds, the foam spreads evenly, creating a long section with the same width as the original dome. However, as the velocity is ramped up, the foam no longer spreads but coasts along the surface on a thin layer of fluid; the plate moves along leaving very little foam in its wake. Finally, at the highest speeds they tried, the spreading regime comes back, only now, the width of the tail of foam is thinner than the original dome. On the other hand, on a hydrophilic surface, there was no trace of the first regime.

The difference seen between the two surfaces led the team to focus on the effect of “wetting” i.e. whether the liquid in the foam likes to cover the surface. Focusing on the appearance of the low-speed regime, they found that on hydrophobic surfaces, films of detergent that make up the foam tend to anchor onto the surface since the liquid tends to “dewet”. The picture that emerges is one where the foam is simply progressively spread from the dome by the plate as it moves. However, if the foam is forced across fast enough to wet the surface, the foam now has a lubricating layer at the base. Walls in the foam, also known as Plateau borders, can no longer grab the substrate and lock itself into place. This is why a faster plate will leave a thin section of foam where the dome originally was, but push the rest across on a thin layer of liquid, leaving nothing but a trail of liquid. The investigation probed not only the plate speed, but also the effect of the gap width and how thick the plate is.

The team’s findings shed light on the lesser-known parts of an everyday phenomenon, with significant potential impact on not only foams, but a wider range of soft materials, whether it be paint, protective coatings, or mayonnaise.

This work was supported by JSPS KAKENHI Grant Numbers 20K14431, 17H02945 and 20H01874.



Journal

Journal of Colloid and Interface Science

DOI

10.1016/j.jcis.2023.07.023

Article Title

Scraping of foam on a substrate

Article Publication Date

13-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Schematic application of AEM with multiple cationic side alkyl chains

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

September 30, 2023
16x9-33704D_0426_CPA_C-STEEL_WEB

Department of Energy funds new center for decarbonization of steelmaking

September 29, 2023

Ghent University’s research team envisions a bright future with active machine learning in chemical engineering

September 29, 2023

Teams invent a new metallization method of modified tannic acid photoresist patterning

September 29, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

Next-generation printing: precise and direct, using optical vortices

Researchers studied thousands of fertility attempts hoping to improve IVF

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In