• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 23, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

To help dry forests, fire needs to be just the right intensity, and happen more than once

Bioengineer by Bioengineer
March 8, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CORVALLIS, Ore. – Oregon State University research into the ability of a wildfire to improve the health of a forest uncovered a Goldilocks effect – unless a blaze falls in a narrow severity range, neither too hot nor too cold, it isn’t very good at helping forest landscapes return to their historical, more fire-tolerant conditions.

Boundary Prescribed Burn

Credit: Photo by Skye Greenler, OSU College of Forestry.

CORVALLIS, Ore. – Oregon State University research into the ability of a wildfire to improve the health of a forest uncovered a Goldilocks effect – unless a blaze falls in a narrow severity range, neither too hot nor too cold, it isn’t very good at helping forest landscapes return to their historical, more fire-tolerant conditions.

The study led by Skye Greenler, a graduate research fellow in the OSU College of Forestry, and Chris Dunn, an assistant professor in the college, has important implications for land managers charged with restoring ecosystems and reducing fire hazard in dry forests such as those east of the Cascade Range.

The findings, published in PLOS One, shed light on the situations in which managed wildfires, as well as postfire efforts such as thinning and planting, are likely to be most effective at achieving restoration goals.

Wildfire has shaped ecosystems for millennia, the researchers note, but its impacts have become an increasing social, economic and ecological concern across the western United States. Aggressive fire exclusion policies, forest and resource management practices and climate change have altered forest structure and composition – increasing forests’ vulnerability to extreme wildfires and drought.

“As wildfire activity continues to intensify in the West, it’s becoming clear that a variety of management activities are necessary to make ecosystems healthier and to lower wildfire risk,” Greenler said. “Fuel reduction treatments like mechanical thinning and prescribed fire can reduce community and ecosystem risk, but in most places, the pace and scale of treatments are way below what’s needed to substantially alter fire effects and behavior.”

In an independent project, Greenler and Dunn in a collaboration with College of Forestry colleagues James Johnston, Andrew Merschel and John Bailey developed a new way to predict the fire severities that are most apt to help eastern Oregon forests return to their historical density, species composition and basal area, a measure of how much ground in a specific area is occupied by tree stems.

“We built probabilistic tree mortality models for 24 species based on their characteristics and remotely sensed fire severity data from a collection of burned areas,” Greenler said. “Then we looked at unburned stands in the Ochoco, Deschutes, Fremont-Winema and Malheur national forests to model postfire conditions and compared the results to historical conditions. That let us identify which fire severities had the highest restoration potential.”

The research team, which also included scientists from the University of Washington, the U.S. Forest Service and Applegate Forestry LLC of Corvallis, generally found that basal area and density targets could be met through fire within a fairly narrow range of moderate severity.

However, one blaze can’t restore species composition to its historical norm in a forest that evolved amid frequent, low-severity fires, the scientists found.

“Landscapes have likely passed thresholds that preclude the effectiveness of managed wildfire alone as a restoration tool,” Greenler said. “In a large number of fire-prone western landscapes, forest structure and composition are no longer resistant or resilient to natural disturbance processes like fire, drought, and endemic insects and pathogens, and interactions among all of those.”

Although more and more wildfires are burning large areas and at high severity, the majority of fires in the West still burn at low or moderate severity, the authors note. They cite a recent analysis that found about half of the burned area in Oregon and Washington from 1985 through 2010 did so in low-severity fires – in systems characterized historically by low- and mixed-severity fire regimes.

“Low severity may be ‘too cold’ to meet restoration objectives in areas where significant tree density reduction or big shifts in tree species composition are needed,” Greenler said. “For a better understanding of the fire severities that are the most restorative, we need empirical modeling that can be applied beyond individual fire events and across a broad range of conditions. Our study lets managers and researchers link forest restoration goals with maps of predicted post-fire conditions.”



Journal

PLoS ONE

DOI

10.1371/journal.pone.0281927

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Too hot, too cold, or just right: Can wildfire restore dry forests of the interior Pacific Northwest?

Article Publication Date

27-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Dr Erin Walsh

A higher dose of magnesium each day keeps dementia at bay

March 23, 2023
Air flow research

Air flow research could reduce disease, contamination spread

March 22, 2023

Memory B cell marker predicts long-lived antibody response to flu vaccine

March 22, 2023

Discovery of anti-mesangial autoantibodies redefines the pathogenesis of IgA nephropathy

March 22, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

New wood-based technology removes 80% of dye pollutants in wastewater

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In