• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Tiny optical elements could one day replace traditional refractive lenses

Bioengineer by Bioengineer
March 28, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

High-resolution imaging applications include wide-angle cameras, miniature endoscopes

IMAGE

Credit: Northwestern University

A Northwestern University research team has developed tiny optical elements from metal nanoparticles and a polymer that one day could replace traditional refractive lenses to realize portable imaging systems and optoelectronic devices.

The flat and versatile lens, a type of metalens, has a thickness 100 times smaller than the width of a human hair.

“This miniaturization and integration with detectors offers promise for high-resolution imaging in devices from small wide-angle cameras to miniature endoscopes,” said Teri W. Odom, who led the research. She is the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences and chair of the department of chemistry.

The properties of metalenses depend on the rationally designed arrangement of nanoscale units. Metalenses have emerged as an attractive option for flat lenses but are currently limited by their static, as-fabricated properties and their complex and expensive fabrication.

For imaging operations such as zooming and focusing, however, most metalenses cannot adjust their focal spots without physical motion. One major reason, Odom said, is that the building blocks of these lenses are made of hard materials that cannot change shape once fabricated. It is difficult in any materials systems to adjust nanoscale-sized features on demand to obtain tunable focusing in metalenses.

“In this study, we demonstrated a versatile imaging platform based on fully reconfigurable metalenses made from silver nanoparticles,” said Odom, a member of Northwestern’s International Institute for Nanotechnology. “During a single imaging session, our metalens device can evolve from a single-focus lens to a multi-focal lens that can form more than one image at any programmable 3D position.”

The paper, titled “Lattice-Resonance Metalenses for Fully Reconfigurable Imaging,” was published recently by the journal ACS Nano.

The Northwestern team built their lenses out of an array of cylindrical silver nanoparticles and a layer of polymer patterned into blocks on top of the metal array. By simply controlling the arrangement of the polymer patterns, the nanoparticle array could direct visible light to any targeted focal points without needing to change the nanoparticle structures.

This scalable method enables different lens structures to be made in one step of erasing and writing, with no noticeable degradation in nanoscale features after multiple erase-and-write cycles. The technique that can reshape any pre-formed polymer pattern into any desirable pattern using soft masks made from elastomers.

###

The research was supported by the Vannevar Bush Faculty Fellowship from the Department of Defense (grant no. N00014-17-1-3023) and the Air Force Research Laboratory (agreement number FA8650-15-2-5518).

Media Contact
Megan Fellman
[email protected]

Original Source

https://news.northwestern.edu/stories/2019/03/tiny-optical-elements-could-one-day-replace-traditional-refractive-lenses/

Related Journal Article

http://dx.doi.org/10.1021/acsnano.9b00651

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blood Test Forecasts Immunotherapy Success in Triple-Negative Breast Cancer

Unveiling the Metabolic Secrets Behind Vision-Saving Therapies

Leveraging Virtual Reality to Combat Substance Use Relapse

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.