• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Tiny, fast, accurate technology on the radar

Bioengineer by Bioengineer
April 18, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: © 2019 KAUST

Radar technology has been used for decades in aviation, defense and speed-camera technology. Now, a team at KAUST, in collaboration with scientists at the VTT Technical Research Center of Finland, have created a compact, low-cost radar with potential applications in healthcare and personal security.

Radar provides detailed information about the size, distance and speed of moving objects. However, for close-range applications, the transmitted radio waves must have short wavelengths to pick up as much detail as possible about its immediate environment. Such sensors could help visually impaired people, and unmanned moving devices, to see by translating radar reflections into useful information.

“Current radar modules are large and bulky. They also lose out on key details because they operate using long radio wavelengths,” says Seifallah Jardak , who worked on the project under the supervision of Sajid Ahmed and Mohamed-Slim Alouini from KAUST and along with Tero Kiuru and Mikko Metso from VTT. “We wanted to develop a low-power, portable radar. Colleagues at VTT brought the necessary experience in millimeter-wave and hardware design, while I focused on the signal processing side and developed modular radar software,” explains Jardak.

The earliest prototype performed a single scan every two seconds, making it difficult to acquire enough input data. Jardak optimized the signal processing modules and improved the performance to eight scans per second, providing better real-time monitoring.

The device design incorporates a frequency-modulated continuous wave (FMCW) radar. This means the radar produces continuous pulses of millimeter-wavelength radio waves which have a frequency that varies during each pulse. The small wavelength means that the time taken for pulses to reach an object and reflect back, and therefore the distance to the object, are calculated accurately.

“To limit the size of our system, we chose an operating frequency of 24 Gigahertz. This enabled us to reduce the size of the microstrip antenna,” says Jardak. “Our design also has one transmitting and two receiving antennae, meaning it can better estimate the angular location of a target.”

The device fits into a 10-centimeter box, weighs less than 150 grams and is powered by a 5V battery. Initial trials suggest the device is capable of target detection, speed estimation and tracking at ranges of up to 12 meters. The team even used it to detect whether a person was breathing when sitting in a chair.

“Our prototype may also be useful for unmanned robotic and quadcopter applications where a collision avoidance system is required,” adds Jardak.

###

Media Contact
Carmen Denman
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/791/tiny,-fast,-accurate-technology-on-the-radar

Tags: Electrical Engineering/ElectronicsMaterialsMechanical EngineeringResearch/DevelopmentRobotry/Artificial IntelligenceTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025
Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Saliva Exosome Proteins and Lipids Diagnose Esophageal Cancer

Feasibility of Range-Compensated Proton Arc Therapy

Fermentable Carbs and Metformin Boost Prediabetes Control

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.