• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Tiny, ancient meteorites suggest early Earth’s atmosphere was rich in carbon dioxide

Bioengineer by Bioengineer
January 27, 2020
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Donald Brownlee/University of Washington


Very occasionally, Earth gets bombarded by a large meteorite. But every day, our planet gets pelted by space dust, micrometeorites that collect on Earth’s surface.

A University of Washington team looked at very old samples of these small meteorites to show that the grains could have reacted with carbon dioxide on their journey to Earth. Previous work suggested the meteorites ran into oxygen, contradicting theories and evidence that the Earth’s early atmosphere was virtually devoid of oxygen. The new study was published this week in the open-access journal Science Advances.

“Our finding that the atmosphere these micrometeorites encountered was high in carbon dioxide is consistent with what the atmosphere was thought to look like on the early Earth,” said first author Owen Lehmer, a UW doctoral student in Earth and space sciences.

At 2.7 billion years old, these are the oldest known micrometeorites. They were collected in limestone in the Pilbara region of Western Australia and fell during the Archean eon, when the sun was weaker than today. A 2016 paper by the team that discovered the samples suggested they showed evidence of atmospheric oxygen at the time they fell to Earth.

That interpretation would contradict current understandings of our planet’s early days, which is that oxygen rose during the “Great Oxidation Event,” almost half a billion years later.

Knowing the conditions on the early Earth is important not just for understanding the history of our planet and the conditions when life emerged. It can also help inform the search for life on other planets.

“Life formed more than 3.8 billion years ago, and how life formed is a big, open question. One of the most important aspects is what the atmosphere was made up of — what was available and what the climate was like,” Lehmer said.

The new study takes a fresh look at interpreting how these micrometeorites interacted with the atmosphere, 2.7 billion years ago. The sand-sized grains hurtled toward Earth at up to 20 kilometers per second. For an atmosphere of similar thickness to today, the metal beads would melt at about 80 kilometers elevation, and the molten outer layer of iron would then oxidize when exposed to the atmosphere. A few seconds later the micrometeorites would harden again for the rest of their fall. The samples would then remain intact, especially when protected under layers of sedimentary limestone rock.

The previous paper interpreted the oxidization on the surface as a sign that the molten iron had encountered molecular oxygen. The new study uses modeling to ask whether carbon dioxide could have provided the oxygen to produce the same result. A computer simulation finds that an atmosphere made up of from 6% to more than 70% carbon dioxide could have produced the effect seen in the samples.

“The amount of oxidation in the ancient micrometeorites suggests that the early atmosphere was very rich in carbon dioxide,” said co-author David Catling, a UW professor of Earth and space sciences.

For comparison, carbon dioxide concentrations today are rising and are currently at about 415 parts per million, or 0.0415% of the atmosphere’s composition.

High levels of carbon dioxide, a heat-trapping greenhouse gas, would counteract the sun’s weaker output during the Archean era. Knowing the exact concentration of carbon dioxide in the atmosphere could help pinpoint air temperature and and acidity of the oceans during that time.

More of the ancient micrometeorite samples could help narrow the range of possible carbon dioxide concentrations, the authors wrote. Grains that fell at other times could also help trace the history of Earth’s atmosphere through time.

“Because these iron-rich micrometeorites can oxidize when they are exposed to carbon dioxide or oxygen, and given that these tiny grains presumably are preserved throughout Earth’s history, they could provide a very interesting proxy for the history of atmospheric composition,” Lehmer said.

###

Other co-authors are Donald Brownlee, a UW professor emeritus of astronomy; Roger Buick, a UW professor of Earth and space sciences; and Sarah Newport, a former UW undergraduate who is now at Rutgers University. The research was funded by NASA, the UW Astrobiology Program, the UW Virtual Planetary Laboratory and the Simons Foundation’s Collaboration on the Origins of Life.

For more information, contact Lehmer at [email protected] or Catling at 206-543-8653 or [email protected].

Media Contact
Hannah Hickey
[email protected]
206-543-2580

Original Source

https://www.washington.edu/news/2020/01/24/tiny-ancient-meteorites-suggest-early-earths-atmosphere-was-rich-in-carbon-dioxide/

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aay4644

Tags: AstronomyAtmospheric ChemistryComets/AsteroidsEarth ScienceEvolutionGeology/SoilGeophysics/GravitySpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

How ‘Scrumping’ Apes Might Have Sparked Our Craving for Alcohol

How ‘Scrumping’ Apes Might Have Sparked Our Craving for Alcohol

July 31, 2025
Foraging for Fruit Crucial to Chimpanzee Survival and a Driving Factor in Human Evolution

Foraging for Fruit Crucial to Chimpanzee Survival and a Driving Factor in Human Evolution

July 31, 2025

Gut Bacteria Polypeptides Boost Rodent Metabolism

July 31, 2025

Philanthropy Drives EMBL’s Strategy, Placing AI at Its Core

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Adaptive Forecasting Enhances Food Price Insights Rapidly

Genes Linked to Schistosome Resistance Discovered in Snails

ANKZF1 Drives LC3-Mediated Clearance of Damaged Mitochondria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.