• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Third and fourth robotic arms feel like a part of the user’s own body

Bioengineer by Bioengineer
June 27, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Overview

A user manipulates the supernumerary robotic arms using their feet in a virtual environment.

Credit: COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

Overview

A research team with members from the University of Tokyo, Keio University and Toyohashi University of Technology have developed supernumerary robotic arms operated by the user’s foot movements in a virtual environment. It has shown that users can feel the supernumerary robotic arms as a part of their own body (embodiment). The study contributes to the design of human augmentation system that can be used naturally and freely without cognitive effort, like the user’s own body.

 

Details

Doctoral student Ken Arai and Professor Masahiko Inami from the University of Tokyo, in collaboration with researchers from Keio University and Toyohashi University of Technology, have developed supernumerary robotic arms that works in conjunction with user’s foot movements in a virtual reality (VR) environment, and have shown that users consider the supernumerary robotic arms as a part of their own body (embodiment). In order to extend bodily functions using robotic third and fourth arms, it is important that the arms can be embodied and easily manipulated like the user’s own body parts. The research group performed experiments to capture the perceptual changes that could occur when the arms were embodied after using and learning about the supernumerary robotic arms. The bodily phenomenon of visual-haptic interaction with the supernumerary robotic arms and the sensation that the number of one’s arm has increased (supernumerary-limb sensation) have been revealed for the first time in the world. This research has been published in Scientific Reports on June 27, 2022.

 

Humans do many things in our daily lives by skillfully manipulating the own bodies. Then, they use tools to do things that are difficult to do with their bodies alone. For example, humans can use scissors to neatly cut paper into desired shapes and use a rake to pick up distant objects. Can humans add an extra limb to their own bodies, such as a third arm or sixth finger? The goal of supernumerary robotic arms is to extend the body’s functions by adding extra limbs using appropriate human-computer interaction systems. It is expected that the supernumerary robotic arms will move as intended naturally, just like the user’s own arms and legs. However, whether the robotic system can be perceived as part of the user’s own body has not been sufficiently investigated.

 

It has been shown that humans can embody artificial objects other than their own body or can feel the sense of body ownership and agency with the objects. Therefore, the researchers aimed to clarify whether the third and fourth robotic arms could become embodied after using them.

 

The researchers investigated whether the use of the supernumerary robotic arms in VR enables the user to perceive the arms as part of his or her own body and whether perceptual changes occur in the proximal space around the robotic arms. The results of the experiment showed that after learning to use the supernumerary robotic system, subjective evaluation scores indicated the supernumerary robotic arms were embodied, and the perceptual change in visual-haptic integration around the supernumerary arm (peripersonal space) correlated with the subjective evaluation score that felt the number of arms increased (supernumerary-limb sensation).

 

Future Outlook

These results suggest that the augmentation of the body’s functions by adding extra body parts has generated the sensation that the user has acquired new body parts that are different from his or her innate body parts. These findings also contribute to the creation of a method for the evaluation of supernumerary robotic systems from the perspective of embodiment. Moreover, the embodiment of supernumerary robotic limbs may expand and refine embodiment research in cognitive sciences.

 

Funding agency

This research was supported in part by the JST ERATO Inami Jizai Body Project (JPMJER1701).

 

Publication

Ken Arai, Hiroto Saito, Masaaki Fukuoka, Sachiyo Ueda, Maki Sugimoto, Michiteru Kitazaki, Masahiko Inami (2022). Embodiment of supernumerary robotic limbs in virtual reality, Scientific Reports, 10.1038/s41598-022-13981-w



Journal

Scientific Reports

DOI

10.1038/s41598-022-13981-w

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Embodiment of supernumerary robotic limbs in virtual reality

Article Publication Date

27-Jun-2022

Share13Tweet8Share2ShareShareShare2

Related Posts

Retouching using boomerangs.

Wood sharpens stone: boomerangs used to retouch lithic tools

August 16, 2022
Yu Huang, UCLA professor of materials science and engineering

Hydrogen fuel cell advance: UCLA team exceeds DOE-set targets for fuel cell performance and durability

August 16, 2022

A fast, accurate, equipment-free diagnostic test for SARS-CoV-2 and its variants

August 16, 2022

The photon ring: A black hole ready for its close-up

August 16, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVirusZoology/Veterinary ScienceWeaponryVaccineUrogenital SystemWeather/StormsViolence/CriminalsVirologyVehiclesVaccinesUrbanization

Recent Posts

  • The early bird gets the fruit: Fossil provides earliest evidence of fruit-eating by any animal
  • Wood sharpens stone: boomerangs used to retouch lithic tools
  • Pre-fertilization DNA transfer to avoid mitochondrial disease inheritance appears safe
  • New standardized framework allows conservationists to assess benefits of non-native species
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In