• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Theory of bubbles lifts cell biology into a new, more quantitative era

Bioengineer by Bioengineer
September 22, 2021
in Biology
Reading Time: 4 mins read
0
Protein seeding
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The heady math that describes how bubbles form in a glass of Champagne has inspired a framework for engineering living cells.

Protein seeding

Credit: Image courtesy of the researchers

The heady math that describes how bubbles form in a glass of Champagne has inspired a framework for engineering living cells.

A study published Sep. 22 in Nature details how an established physics theory governing bubble and droplet formation led to a new understanding of the principles organizing the contents of living cells. The work marks a seismic shift in researchers’ ability both to understand and control the complex soft materials within our cells.

“This approach is common in materials science, but we’ve adapted it to do something unprecedented in cells,” said principal investigator Clifford Brangwynne, the June K. Wu ’92 Professor in Engineering and director of the Princeton Bioengineering Initiative.

The current work follows Brangwynne’s discovery more than a decade ago that cellular proteins organize into liquid structures inside the cell. That insight gave rise to a new field of study examining how parts of cells form much like oil drops coalescing in water. Scientists have puzzled ever since over the exact details of how those structures assemble. But it’s a hard thing to measure the squishy dynamics of individual molecules inside a cell, where mysterious, overlapping processes roil chaotically as minute structures form and dissolve a thousand times per second.

Postdoctoral researcher Shunsuke Shimobayashi had studied soft matter physics at the Kyoto University and wondered whether his background working on organic compounds called lipids might illuminate anything interesting about the problem. If protein molecules condense out of their surroundings the way oil separates from water, maybe the math that described the first steps in that process, called nucleation, would prove useful in proteins as well.

Shimobayashi turned to classical nucleation theory, a pillar of materials science. Its equations had powered some of the most profound technological transformations of the 20th century, from the climate models that first revealed global warming to the fertilizers that helped lift billions of people out of starvation.

He was also keenly aware of a critical distinction: those equations describe simple, inanimate systems, but the inside of a cell is in turmoil. “It’s a much more complex material environment for biomolecules,” Shimobayashi said. But he pushed ahead, collaborating with theorists Pierre Ronceray and Mikko Haataja, professor of mechanical and aerospace engineering. The researchers stripped the theory down to its two most important parameters, adapting it to try to understand how the process might work in cells. Then to test the theory, Shimobayashi turned to an advanced protein tool developed in Brangwynne’s lab in 2018 that provided an ideal, simplified system that mimics how the process occurs naturally in cells. Putting them together, the results came as something of a shock.

When Shimobayashi tried to induce the droplets to seed instantaneously, the system failed. But when he seeded the droplets more slowly, they nucleated at precisely defined locations, in a way that lined up perfectly with his adapted theory. He had predicted how, where and when the protein droplets formed with what Brangwynne called “remarkable accuracy.”

The team next turned back to the messy complexity of native cell structures. When they accounted for all the processes that act on protein concentrations, they found that the theory worked just as well. They had quantified the molecule-by-molecule assembly of proteins into the complex liquid structures that regulate life’s most basic routines. Not only do these structures look and act like oil in water, Shimobayashi said, they also form droplets in the same basic nucleation patterns, clustering around minute variations in their environment at rates that can be predicted with the same quantitative precision as other kinds of materials.

With that predictive power comes an accelerated engineering capacity, according to Brangwynne. He believes quantifying biomolecular processes and developing predictive models in the mold of physics will lead to a world in which we no longer watch passively as our loved ones succumb to diseases like Alzheimer’s.

“We first have to understand how it works, with quantitative mathematical frameworks that are the bedrock of society’s engineering marvels. And then we can take the next steps, to manipulate biological systems with greater control,” Brangwynne said. “We need to be able to turn the knobs.”

In addition to Brangwynne and Shimobayashi, the study’s authors include Pierre Ronceray, formerly a postdoctoral researcher at Princeton; David W. Sanders, a postdoctoral researcher in Brangwynne’s lab; and Mikko Haataja, professor of mechanical and aerospace engineering. The work was supported in part by the Howard Hughes Medical Institute, the National Institutes of Health and the Princeton Center for Complex Materials.



Journal

Nature

DOI

10.1038/s41586-021-03905-5

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Nucleation landscape of biomolecular condensates

Article Publication Date

22-Sep-2021

Share14Tweet9Share3ShareShareShare2

Related Posts

Initiative Aims to Halt Decline of Iconic Butterfly Species

Initiative Aims to Halt Decline of Iconic Butterfly Species

October 1, 2025
Revolutionary Algorithm Enhances Disease Classification Using Omics

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025

Carnegie Mellon Wins ARPA-H Grant to Develop At-Home Technology for Early Cancer Detection

October 1, 2025

Uncovering How Pathogens Assemble Protein Machinery to Thrive in the Gut

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    65 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Monoclonal Antibodies Shield Against Drug-Resistant Klebsiella

High-Frame Ultrasound Reveals Liver Cancer Insights

Impact of Reaction Time on α-MnO₂ in Zinc-Ion Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.