• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, May 20, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Theoretical proof that a strong force can create light-weight subatomic particles

Bioengineer by Bioengineer
June 24, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kavli IPMU

Using only a pen and paper, a theoretical physicist has proved a decades-old claim that a strong force called Quantum Chromo Dynamics (QCD) leads to light-weight pions, reports a new study published on June 23 in Physical Review Letters.

The strong force is responsible for many things in our Universe, from making the Sun shine, to keeping quarks inside protons. This is important because it makes sure that the protons and neutrons bind to form nuclei of every atom that exists. But there is still a lot of mystery surrounding the strong force. Einstein’s relation E=mc2 means a strong force leads to more energy, and more energy means a heavier mass. But subatomic particles called pions are very light weight. Otherwise nuclei would not bind, there would be no atoms other than hydrogen, and we wouldn’t exist.

Why?

When quarks were discovered experimentally by striking them out of a proton with energetic electrons, scientists came up with the “explanation” that a property of the strong force called confinement was imprisoning quarks, preventing them from being observed directly. However, the mystery remained that no one could give theoretical proof that derived confinement from QCD.

Late Nobel Laureate Yoichiro Nambu proposed a concept called “spontaneous symmetry breaking” was responsible for creating essentially massless particles equivalent to pions. That is why these pions are so light in weight (in the real world, small intrinsic mass of quarks does not create completely massless particles). But yet again, no one could demonstrate that the theory of the strong force, QCD, realizes the proposed spontaneous symmetry breaking.

So Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) Principal Investigator Hitoshi Murayama solved this problem using a version of the theory with a mathematically elegant enhancement called supersymmetry. Yet the real world does not have supersymmetry. Murayama approached the real world using a specific way of breaking supersymmetry called anomaly mediation that he proposed back in 1998.

In doing so, Murayama managed to show that QCD indeed leads to very light-weight pions, something that had been suggested by numerical simulations with supercomputers, but technically impossible with massless quarks to definitively answer the question.

“I always hoped to understand how the strong nuclear force works so that we can exist. I’m very excited that I managed to prove Nambu’s theory from QCD that has been so difficult for decades. This is a part of my long quest why we exist. Physics may not be too far away from answering this millennia-long question,” said Murayama.

The study may open up new avenues to the study dynamics of non-supersymmetric gauge theories.

###

Media Contact
Motoko Kakubayashi
[email protected]

Original Source

https://www.ipmu.jp/en/20210624-PionQCD

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.126.251601

Tags: AstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

The main principles of binary hologram with drug-elution capabilities.

Biocompatible binary hologram with drug-elution capabilities

May 20, 2022
Since 2016, CARB-X has funneled funding and expertise to companies developing life-saving new antibiotics

Can we prevent antibiotic resistance?

May 19, 2022

Using everyday WiFi to help robots see and navigate better indoors

May 19, 2022

A gene-targeted approach may help prevent or recover neonatal brain injuries

May 19, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonZoology/Veterinary ScienceWeaponryVehiclesWeather/StormsViolence/CriminalsVaccineVirusVaccinesUrogenital SystemVirologyUrbanization

Recent Posts

  • ‘Moth motorways’ could help resist climate change impact
  • Satellites and drones can help save pollinators
  • What the new Jurassic Park movie gets wrong: Aerodynamic analysis causes a rethink of the biggest pterosaur.
  • Biocompatible binary hologram with drug-elution capabilities
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....