• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Theoretical proof that a strong force can create light-weight subatomic particles

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using only a pen and paper, a theoretical physicist has proved a decades-old claim that a strong force called Quantum Chromo Dynamics (QCD) leads to light-weight pions, reports a new study published on June 23 in Physical Review Letters.

The strong force is responsible for many things in our Universe, from making the Sun shine, to keeping quarks inside protons. This is important because it makes sure that the protons and neutrons bind to form nuclei of every atom that exists. But there is still a lot of mystery surrounding the strong force. Einstein’s relation E=mc2 means a strong force leads to more energy, and more energy means a heavier mass. But subatomic particles called pions are very light weight. Otherwise nuclei would not bind, there would be no atoms other than hydrogen, and we wouldn’t exist.

Why?

When quarks were discovered experimentally by striking them out of a proton with energetic electrons, scientists came up with the “explanation” that a property of the strong force called confinement was imprisoning quarks, preventing them from being observed directly. However, the mystery remained that no one could give theoretical proof that derived confinement from QCD.

Late Nobel Laureate Yoichiro Nambu proposed a concept called “spontaneous symmetry breaking” was responsible for creating essentially massless particles equivalent to pions. That is why these pions are so light in weight (in the real world, small intrinsic mass of quarks does not create completely massless particles). But yet again, no one could demonstrate that the theory of the strong force, QCD, realizes the proposed spontaneous symmetry breaking.

So Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) Principal Investigator Hitoshi Murayama solved this problem using a version of the theory with a mathematically elegant enhancement called supersymmetry. Yet the real world does not have supersymmetry. Murayama approached the real world using a specific way of breaking supersymmetry called anomaly mediation that he proposed back in 1998.

In doing so, Murayama managed to show that QCD indeed leads to very light-weight pions, something that had been suggested by numerical simulations with supercomputers, but technically impossible with massless quarks to definitively answer the question.

“I always hoped to understand how the strong nuclear force works so that we can exist. I’m very excited that I managed to prove Nambu’s theory from QCD that has been so difficult for decades. This is a part of my long quest why we exist. Physics may not be too far away from answering this millennia-long question,” said Murayama.

The study may open up new avenues to the study dynamics of non-supersymmetric gauge theories.

###

Media Contact
Motoko Kakubayashi
[email protected]

Original Source

https://www.ipmu.jp/en/20210624-PionQCD

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.126.251601

Tags: AstrophysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Rohu Fry Transport: Key Water Quality Insights

Polyacrylic Acid-Copper System Detects Gaseous Hydrogen Peroxide

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.