• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The world’s longest bottlebrush polymer ever synthesized

Bioengineer by Bioengineer
March 25, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Potential utility for the development of flexible, low-friction polymeric materials

IMAGE

Credit: NIMS

NIMS and RIKEN have succeeded in synthesizing the longest ever bottlebrush polymer. This polymer–resembling a green foxtail–is composed of a main chain and numerous side chains grafting from it. The team also succeeded in giving various chemical properties to the ultralong bottlebrush polymer. These achievements are expected to substantially advance the current synthetic methods of bottlebrush polymers. This technique may be applicable to the development of flexible and low-friction polymeric materials.

In the development of polymeric materials, it is necessary to link molecular units with desired chemical properties, called monomers, to the desired length. In this context, bottlebrush polymers are attracting attention as a new type of polymer material, consisting of a single main chain and numerous side chains, and it is possible to design polymers with various chemical compositions by selecting the side chains. On the other hand, conventional synthetic methods are limited to lengths on the order of several hundred nanometers, or at most about 1 μm, due to issues such as monomer reactivity and the presence of trace impurities, and there is no precedent for the synthesis of bottlebrush polymers longer than 2 μm.

This research team recently succeeded in synthesizing the longest bottlebrush polymer ever by devising the molecular design of the monomer as starting material and using a single crystal of the monomer to set up a polymerization environment with very few impurities. The length reached 7 μm, which is about 3.8 times longer than the longest value so far. Furthermore, by combining two types of polymerization methods, the research team succeeded in synthesizing bottlebrush polymers with four types of side chains while maintaining the length of the main chain.

Use of the monomers developed in this research enables the synthesis of a variety of bottlebrush polymers with controlled length, diameter and chemical properties. Bottlebrush polymers may be used as a low-friction surface coating. Applying this polymer to the surfaces of moving machinery parts, for example, may reduce energy loss caused by friction. In future studies, we plan to develop flexible and low-friction materials taking advantage of the ultralong bottlebrush polymer.

###

This project was carried out by a research team led by Yoshihiro Yamauchi (Independent Scientist, Research Center for Functional Materials, NIMS) and Yasuhiro Ishida (Team Leader, Center for Emergent Matter Science, RIKEN). This work was mainly supported by the JSPS Grant-in-Aid for Scientific Research (B) (project numbers: 20H02454, 20H02791), the JST Strategic Basic Research Program CREST (project number: JPMJCR17N1), the Izumi Science and Technology Foundation (2018-J-115), the Iketani Science and Technology Foundation (0321143-A) and the Shorai Foundation for Science and Technology.

6. This research was published in the online version of Angewandte Chemie International Edition as a “Hot Paper” on November 30, 2020.

Contacts

(Regarding this research)

Yoshihiro Yamauchi

Independent Scientist

Molecular Mechatronics Group

Polymers and Biomaterials Field

Research Center for Functional Materials

National Institute for Materials Science

Tel: +81-29-859-2196

Email: YAMAUCHI.Yoshihiro=nims.go.jp

(Please change “=” to “@”)

Yasuhiro Ishida

Team Leader, Center for Emergent Matter Science

RIKEN

Tel: +81-48-462-1111 (6351)

Email: y-ishida=riken.jp

(Please change “=” to “@”)

URL: https://cems.riken.jp/jp/laboratory/ebsmrt

(General information)

Public Relations Office

National Institute for Materials Science

Tel: +81-29-859-2026

Fax: +81-29-859-2017

Email: pressrelease=ml.nims.go.jp

(Please change “=” to “@”)

Public Relations Office

RIKEN

Email: ex-press=riken.jp

(Please change “=” to “@”)

Media Contact
Yasufumi Nakamichi
[email protected]

Original Source

https://www.nims.go.jp/eng/news/press/2020/12/202012090.html

Related Journal Article

http://dx.doi.org/10.1002/anie.202009759

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Develop More Efficient, Cost-Effective Magnets

Scientists Develop More Efficient, Cost-Effective Magnets

August 20, 2025
Here’s a rewritten version of the headline for your science magazine post: “Cascading Water Creates Stunning Fluted Patterns”

Here’s a rewritten version of the headline for your science magazine post: “Cascading Water Creates Stunning Fluted Patterns”

August 20, 2025

Advancing Database Technology to Enhance Detection of Designer Drugs

August 20, 2025

Scientists Unveil Groundbreaking Crystal That Produces Oxygen

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Wastewater Technology Addresses Fatbergs at Their Source

Blocking Brain Damage Could Slow Brain Cancer Growth

Nerve Damage from Cancer Triggers Chronic Inflammation and Undermines Immunotherapy Effectiveness

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.