• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The “wishbone” charm that restores the hope for bone regeneration

Bioengineer by Bioengineer
March 24, 2023
in Health
Reading Time: 3 mins read
0
LOCAL ADMINISTRATION OF DECOY NUCLEIC ACID MEDICINE SUPPRESS ALVEOLAR RIDGE RESORPTION
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Tokyo Medical and Dental University (TMDU) demonstrate how a polymeric nanoparticle gene delivery system can promote bone formation

LOCAL ADMINISTRATION OF DECOY NUCLEIC ACID MEDICINE SUPPRESS ALVEOLAR RIDGE RESORPTION

Credit: Department of Orthodontic Science, TMDU

Researchers from Tokyo Medical and Dental University (TMDU) demonstrate how a polymeric nanoparticle gene delivery system can promote bone formation

Tokyo, Japan – Does a “magic bullet” exist in regenerative medicine? Researchers have long wished to design a cutting-edge gene therapy that regenerates tissues damaged by disease or trauma. That wish may come true now that a research team has developed a polymeric gene delivery therapy that promotes new bone formation after traumatic inflammation.

In a study published this month in the International Journal of Molecular Sciences, researchers from Tokyo Medical and Dental University (TMDU) have revealed that a gene delivery therapy can effectively suppress inflammation to enhance tissue healing after tooth extraction.

Tooth extraction is a common surgical procedure in dental medicine. When a tooth is removed, sores are formed on the socket, which triggers a physiological healing process involving the reconstruction of damaged soft and hard tissues. One phase of wound healing, known as hemostasis, begins by stopping the bleeding from blood clots, which stimulates an inflammatory phase. This can help prevent further bleeding, but complications can arise if prolonged. After tooth extraction, excessive inflammation can cause residual ridge resorption (reduction of the residual bone in the jaw), which can induce a negative and aggravating impact on dental surgery.

Bone remodeling, which occurs throughout life, is mediated by a signaling pathway that involves the protein complex NF-κB (nuclear factor-kappa B). It controls the production of genes that regulates inflammation and bone healing. “Inhibitors of NF-κB are widely recognized in the treatment of bone resorption; however, the application of an NF-κB decoy oligodeoxynucleotide (ODN) is poorly investigated,” explains lead author Takashi Ono.

In this study, tooth extraction was conducted using molar extraction surgery. A gene/drug delivery system was developed utilizing an efficient copolymer vector – a type of poly(Lactic-co-glycolic Acid) – to deliver NF-κB decoy ODNs (double-stranded DNA fragments) to the extraction socket of rats and their therapeutic effects were investigated. It was found that the local administration of NF-κB decoy ODNs using a copolymer vector effectively inhibited bone resorption and promoted bone formation at the extraction socket. Additionally, gene delivery therapy prevented excessive inflammation. “This is the first in-vivo study revealing the efficacy of NF-κB decoy ODNs administered by a copolymer vector to promote bone healing after tooth extraction,” says Ono.

The findings of this study may lead to innovative gene therapy to prevent residual ridge resorption after surgical tooth extraction. 

###

This article, “NF-κB Decoy ODN-Loaded Poly(Lactic-co-glycolic Acid) Nanospheres Inhibit Alveolar Ridge Resorption,” was published in the International Journal of Molecular Sciences at DOI: 10.3390/ijms24043699



Journal

International Journal of Molecular Sciences

DOI

10.3390/ijms24043699

Article Title

NF-κB Decoy ODN-Loaded Poly(Lactic-co-glycolic Acid) Nanospheres Inhibit Alveolar Ridge Resorption

Share12Tweet8Share2ShareShareShare2

Related Posts

Children’s Hospitalized Flu: High Antibiotic Overuse Revealed

October 4, 2025

Evaluating NLP Software for Copy-Number Variant Analysis

October 4, 2025

Evaluating Free Newborn Care Program in Gandaki, Nepal

October 4, 2025

Boosting Kinship Analysis: Sequence vs. Length STR Genotyping

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Children’s Hospitalized Flu: High Antibiotic Overuse Revealed

Evaluating NLP Software for Copy-Number Variant Analysis

Enhancing Taxonomy Databases with Efficient Sketch Techniques

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.