• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The ultimate death stare: How moth wing patterns scare off predatory birds with amazing optical illusion

Bioengineer by Bioengineer
October 12, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How art mirrors life when it comes to moth wings

Peacock butterfly

Credit: Dr Hannah Rowland.

How art mirrors life when it comes to moth wings

Have you ever felt that a person in a portrait is watching you, their eyes following you about a room? This optical illusion is known as the Mona Lisa effect, after Leonardo da Vinci’s famously enigmatic painting. When artists paint their sitter’s eyes with the pupils perfectly centered, no matter where visitors stand – to the left, right, or in front of the painting – eye contact is guaranteed. Nature seems to have hit upon the same idea. But in the animal kingdom it can be a matter of life or death.

Eyespots
Many species of fish, butterflies, moths, praying mantids, and beetles have paired circular markings on their bodies that often appear to resemble eyes. Eyespots can deflect a predator’s attention to a prey’s non-vital body parts (a prey is much more likely to survive a bite to its tail than its head). Eyespots also can be intimidating and deter predators from attacking at all. 

One explanation for this is that predators mistake eyespots for the eyes of their own predators. If this is the case, then eyespots that seem to look directly at them would be the most threatening. Much like the portraits whose eyes seem to follow you around the room, eyespots might appear to maintain eye contact with predators no matter their vantage point. On the other hand, if eyespots were displaced either to the left or right, they would only protect prey from predators approaching from that direction. 

Another explanation is that eyespots have nothing to do with eyes. Predators could be deterred not because eyespots look like eyes, but simply because they are patterns that stand out. There are many conspicuous colors and patterns in the animal kingdom that are aversive to predators but look nothing like eyes – for example, the red and black patterns of ladybirds. Humans might perceive eyespots to look like eyes, but that doesn’t necessarily mean that predators do too. They may simply see ‘scary’ conspicuous markings.

Creating the ultimate death stare
We tested the idea that forward-facing eyespots appear to gaze at predators by pitting artificial moths against newly hatched domestic chicks. We created the moths by pinning paper triangles over mealworms – a favorite food of chicks. The paper triangles were printed with eyespots in one of three configurations: either perfectly concentric circles, or with the center circle nudged to the right or left. All of the prey were designed to be equally conspicuous to the predators. To us, these appeared to gaze directly ahead or to one side. Would the direction of gaze affect the chicks’ motivation to attack?

Staring death in the eye

Next, we built three miniature catwalks (well, actually, chickwalks) to lead the chicks towards the moth. One led directly towards the prey, and the two others directed the chicks to approach the moth from either the left or right. We timed how long it took a chick to approach and attack each type of moth from each of the three directions. 

Chicks were slow to approach from the left when the moth’s eyespots were shifted to the left, and slow to approach from the right when the moth’s eyespots were shifted to the right. However, when chicks approached these moths from the opposite direction, they quickly approached the moth and ate the mealworm. The chicks were slow to approach the moths with concentric circle eyespots from all three directions.

Our results are consistent with the idea that the chicks perceived our artificial eyespots as eyes, and that eyespots are most effective when they appear to gaze at predators. Eyespots that are concentric circles appear to stare at predators from a wider range of directions, just like the portraits that maintain eye contact from wherever you stand. Which also probably explains why eyespots are so common in nature. 



Journal

Frontiers in Ecology and Evolution

DOI

10.3389/fevo.2022.951967

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Eyespot configuration and predator approach direction affect the antipredator efficacy of eyespots

Article Publication Date

12-Oct-2022

COI Statement

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Salps

Study reveals salps play outsize role in damping global warming

February 3, 2023
Molecular structure of the RepB protein bound to DNA

A protein structure reveals how replication of DNA coding for antibiotic resistance is initiated

February 3, 2023

Voiceless frog discovered in Tanzania

February 3, 2023

Are plastics in the ocean as big a problem as widely believed?

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

New treatment approach for prostate cancer could stop resistance in its tracks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In