• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The U joins national sustainable manufacturing alliance for recycling and remanufacturing

Bioengineer by Bioengineer
January 6, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rochester Institute of Technology's Golisano Institute for Sustainability (GIS) was selected this week by the U.S. Department of Energy, as part of its Manufacturing USA initiative, to lead its new Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute–a national coalition of leading universities and companies that will forge new clean energy initiatives deemed critical in keeping U.S. manufacturing competitive.

The REMADE Institute, under the RIT-led Sustainable Manufacturing Innovation Alliance (SMIA), will leverage up to $70 million in federal funding that will be matched by $70 million in private cost-share commitments from industry and other consortium members, including 85 partners.

The institute will focus its efforts on driving down the cost of technologies essential to reuse, recycle and remanufacture materials such as metals, fibers, polymers and electronic waste and aims to achieve a 50-percent improvement in overall energy efficiency by 2027. These efficiency measures could save billions of dollars in energy costs and improve U.S. economic competitiveness through innovative new manufacturing techniques, small business opportunities and offer new training and jobs for American workers.

The Department of Metallurgical Engineering, the College of Mines and Earth Sciences, the Global Change and Sustainability Center, and other entities at the University of Utah will work in collaboration with Idaho National Lab, Argonne National Lab, University of Illinois and other leading universities, national labs and industrial partners in partnership with the U.S. Department of Energy. In all, 26 universities, 44 companies, seven national labs, 26 industry trade associations and foundations and three states (New York, Colorado and Utah) are engaged in the effort.

Economic impact and workforce development

REMADE Institute partners have the following five-year goals:

  • 5 to 10 percent improvement in manufacturing material efficiency by reducing manufacturing material waste
  • 50 percent increase in remanufacturing applications
  • 30 percent increase in efficiency of remanufacturing operations
  • 30 percent increase in recycling efficiencies
  • A targeted 50 percent increase in sales for the U.S. manufacturing industry to $21.5 billion and the creation of a next-generation recycling and manufacturing workforce.

The REMADE Institute also will develop and implement an education and workforce development program that will fill workforce gaps identified by its industry, government and academic partners and build the next generation of the recycling and remanufacturing workforce.

###

Media Contact

Lisa Potter
[email protected]
801-585-3093
@uofunews

http://www.unews.utah.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Photo

Scientists identify how some angiogenic drugs used to treat cancer and heart disease cause vascular disease

May 30, 2023
Potential new therapeutic targets in NKTL

CSI Singapore researchers uncover potential novel therapeutic targets against natural killer/T-cell lymphoma

May 30, 2023

Deconstructing the role of MALAT1 in MAPK-Signaling in melanoma

May 30, 2023

Biological specimens imaged with X-rays without damage

May 30, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists identify how some angiogenic drugs used to treat cancer and heart disease cause vascular disease

CSI Singapore researchers uncover potential novel therapeutic targets against natural killer/T-cell lymphoma

Deconstructing the role of MALAT1 in MAPK-Signaling in melanoma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In