• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The stroke care paradox: Close-knit social networks increase delays in hospital arrival

Bioengineer by Bioengineer
March 25, 2019
in Health
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study finds that tighter networks of family members restricted information flow, delayed arrival time for those in need of life-saving care

Newly developed treatment strategies can minimize the size of a patient’s stroke and, in many cases, change what would have been a life-altering cerebrovascular event into a minor one with the prospect of excellent recovery. But these therapies are time sensitive — delays in seeking care can put them out of reach. Each year in the U.S., 795,000 patients will have a stroke and approximately 70 percent of them will arrive at the hospital more than six hours after the onset of symptoms. Investigators from Brigham and Women’s Hospital examined how social networks may influence delays in arrival times for patients experiencing the symptoms of a stroke. Paradoxically, they found that patients with closer-knit social networks, including family members and spouses, were more likely to delay seeking hospital care whereas those with a more dispersed network of acquaintances were more likely to seek care faster. The team’s analysis is published in Nature Communications.

“Closed networks are like echo chambers in which there is a tendency for everyone to agree to watch and wait,” said corresponding author Amar Dhand, MD, DPhil, of the Department of Neurology at the Brigham. “A major problem in stroke care is patients’ delayed arrival to the hospital, and we show that this problem is related to the influence of patients’ social networks.”

Dhand and colleagues surveyed 175 patients within five days of suffering from a stroke. They collected information from each participant about personal social networks, creating network maps. The team focused on patients with milder symptoms because this population is at higher risk for delay and were able to engage in the survey during hospitalization.

They found that the networks of slow arrivers were smaller and more close-knit than those of fast arrivers, confirming a paradoxical role for a person’s social environment in a medical emergency. The authors concluded that a shift from mass education about stroke symptoms to a more targeted approach may help reduce delays. Identifying at-risk patients with small and close-knit networks before a stroke and teaching them about symptoms and communication pitfalls as well as helping them develop an action plan, which might include calling a designated friend, could improve stroke preparedness and outcomes.

The current study was limited mainly to patients who had had a mild stroke and it remains to be seen if social networks play as large a role for delays in care for a moderate or severe stroke. The survey did not include non-English speakers or patients with severe strokes or aphasia. The study also relied on self-reporting of social networks. The authors note that additional study in more diverse populations is warranted.

###

Funding for this work was provided by the National Center for Medical Rehabilitation Research (K23HD083489), American Heart Association (14CRP20080001), National Institute of Diabetes and Digestive and Kidney Diseases (P30DK046200), National Institute of Neurological Disorders and Stroke (R01NS085419), and the Football Players Health Study at Harvard University.

Paper cited: Dhand, A et al. “Social networks and risk of delayed hospital arrival after acute stroke” Nature Communications DOI: 10.1038/s41467-019-09073-5

Media Contact
Haley Bridger
[email protected]
http://dx.doi.org/10.1038/s41467-019-09073-5

Tags: CardiologyMedicine/HealthStroke
Share12Tweet7Share2ShareShareShare1

Related Posts

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025
blank

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

July 29, 2025

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

July 28, 2025

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

July 28, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.