• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The spark that created life

Bioengineer by Bioengineer
September 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Monash University

Evolution by Darwinian natural selection is immensely powerful – both in nature and within laboratories. Using 'laboratory evolution', we can take an enzyme which combines random mutations and functional selection, and improve its function by more than 1000 times. You can see evidence of science taking advantage of evolution across the field, from synthesised medications used to prevent the reoccurrence of heart attacks (beta blockers) to the development of tumor-targeting antibody therapeutics.

However, nothing evolves unless it already exists. When life started more than three billion years ago, what was the spark that created something from randomness?

Researchers from the Monash Biomedicine Discovery Institute (BDI), have identified what they have termed 'Structural Capacitance Elements' in mutated proteins that are associated with many different types of human diseases, in particular a range of cancers.

Structural Capacitance Elements are localised regions of disorder within proteins, which retain the potential to coalesce into 'micro-structures' following the introduction of a mutation. They act as nucleating seeds, or 'feedstock' for evolution to proceed, providing the basis of an accelerated mechanism of Darwinian evolution by natural selection, supplementing the slow and incremental process of classic Darwinian evolution.

This discovery has recently been published in the Journal of Molecular Biology. Lead researcher on this paper, Associate Professor Ashley Buckle, explained the significance of this discovery.

"Up until now, the prevailing belief amongst structural biologists has been that mutations that are implicated in disease act by disrupting protein structures – typically referred to as the 'loss-of-structure-function' paradigm. However it has recently been uncovered that more than 40 per cent of proteins have no well-defined structure at all," Associate Professor Buckle said.

"This prompted us to ask a very different question, and to turn the prevailing belief on its head," he said.

The research team analysed many of these disease-associated mutations and found that these 'Structural Capacitance Elements' may allow mutations to trigger a 'gain-of-function' by inducing structure where none existed before.

"We realised that our work may have diverse implications. Not only does it shed light on the evolution of protein structures, it may provide insights into the engineering of highly evolvable proteins, and the identification and selective targeting of human disease epitopes," he said.

"Understanding if and how a mutation may change the protein shape will be pivotal in targeting that protein for use in therapeutics that recognise the mutated region."

###

Read the full paper in the Journal of Molecular Biology titled Structural Capacitance in Protein Evolution and Human Diseases.

Dr Chen Li (now an NHMRC CJ Martin Fellow working at the ETH in Zurich) performed the work as part of his PhD in the Buckle lab, in collaboration with Dr Adrian Woolfson (Nouscom AG, Basel).

About the Monash Biomedicine Discovery Institute

Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute (BDI) at Monash University brings together more than 120 internationally-renowned research teams. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

Media enquiries

Grace Williams
Senior Communications Advisor
Monash Biomedicine Discovery Institute
+61399059597
[email protected]

Media Contact

Grace Williams
[email protected]
61-399-059-597
@MonashUni

http://www.monash.edu.au

Related Journal Article

http://dx.doi.org/10.1016/j.jmb.2018.06.051

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.