• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, May 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The secret slimming effect of sweet potato waste

Bioengineer by Bioengineer
December 7, 2016
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The sweet potato pie you eat during the holidays might not be good for your waistline, but according to a new study published in the journal Heliyon, the starchy water left over from cooking the sweet potato could have slimming effects — at least in mice.

In the new study, mice on a high fat diet had significantly lower body weight after one month if they were also fed sweet potato peptide, which was produced by enzyme digestion of proteins in the water wasted during processing. This suggests the peptide plays a role in digesting fats, but more research is needed to determine whether this also happens in humans.

More than 105 million metric tons of sweet potato are produced globally every year, according to the International Potato Center (CIP), making it the world's fifth most important crop. About 15 percent of sweet potato is used to produce starch materials, processed foods, and distilled spirits in Japan. The resulting wastewater is usually discarded, potentially causing serious environmental problems.

In the new study, Dr. Koji Ishiguro from National Agriculture and Food Research Organization in Japan and colleagues wanted to find a new way to use this waste, so they investigated the effect of proteins found in the water on digestion in mice.

"We throw out huge volumes of wastewater that contains sweet potato proteins – we hypothesized that these could affect body weight, fat tissue and other factors," explained Dr. Ishiguro. "Finding alternative uses for the sweet potato proteins in wastewater could be good for the environment and industry, and also potentially for health."

The researchers fed three groups of mice high fat diets, giving one group the protein digest – sweet potato peptide (SPP) – at a high concentration and one group at a lower concentration. After 28 days they weighed the mice and measured their liver mass and fatty tissue. They also measured the levels of the fats cholesterol and triglyceride, as well as leptin, which controls hunger, and adiponectin, which regulates metabolic syndrome.

Mice that were given SPP had significantly lower body weight and liver mass. Mice fed SPP also had lower cholesterol and triglycerides, and higher levels of the hunger and lipid-controlling hormones. The results suggest that SPP helps activate appetite suppression and control lipid metabolism in mice fed high fat diets.

"We were surprised that SPP reduced the levels of fat molecules in the mice and that it appears to be involved controlling appetite suppression molecules," commented Dr. Ishiguro. "These results are very promising, providing new options for using this wastewater instead of discarding it. We hope SPP is used for the functional food material in future."

###

Article details:

"Effects of a sweetpotato protein digest on lipid metabolism in mice administered a high-fat diet" by Ishiguro et al. (http://www.heliyon.com/article/e00201/). The article appears in Heliyon (December 2016), published by Elsevier.

About Heliyon:

Heliyon is an online only, fully open access journal from Elsevier publishing quality original research across all disciplines. All Heliyon papers are freely available on both Heliyon.com and ScienceDirect. Heliyon is also indexed on Scopus and PubMed Central, ensuring it reaches the widest possible relevant audience. Learn more at http://www.heliyon.com/about/.

Media Contact

Mary Beth O'Leary
[email protected]
617-386-2151
@elseviernews

http://www.elsevier.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

JAK1/2 Inhibition Fights MPNs Without Blocking Oncogenes

JAK1/2 Inhibition Fights MPNs Without Blocking Oncogenes

May 24, 2025
blank

HSK21542 Eases Postoperative Pain: Two Phase 3 Trials

May 24, 2025

hnRNPL Drives PIK3CB Activation, Boosts Ovarian Cancer Glycolysis

May 24, 2025

Shaking Disrupts Stem Cell Clocks via TEAD Pathway

May 24, 2025
Please login to join discussion

POPULAR NEWS

  • Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial

    Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    92 shares
    Share 37 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    68 shares
    Share 27 Tweet 17
  • Universe Fades Faster Than Expected—Yet Still Over Vast Timescales

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

JAK1/2 Inhibition Fights MPNs Without Blocking Oncogenes

HSK21542 Eases Postoperative Pain: Two Phase 3 Trials

hnRNPL Drives PIK3CB Activation, Boosts Ovarian Cancer Glycolysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.