• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The protein signature changes during heart disease caused by reductive stress

Bioengineer by Bioengineer
August 3, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BIRMINGHAM, Ala. – Two years ago, University of Alabama at Birmingham researchers and colleagues reported that reductive stress — an imbalance in the normal oxidation/reduction, or redox, homeostasis — caused pathological changes associated with heart failure in a mouse model. This was a follow-up to their 2018 clinical study that found about one in six heart failure patients shows reductive stress.

Rajasekaran Namakkal-Soorappan

Credit: UAB

BIRMINGHAM, Ala. – Two years ago, University of Alabama at Birmingham researchers and colleagues reported that reductive stress — an imbalance in the normal oxidation/reduction, or redox, homeostasis — caused pathological changes associated with heart failure in a mouse model. This was a follow-up to their 2018 clinical study that found about one in six heart failure patients shows reductive stress.

Now they have extended their description of changes caused by reductive stress to describe changes in the proteome of heart cells in mice, disclosing a likely proteome signature for reductive stress cardiomyopathy. A proteome is the complement of proteins expressed in a cell or tissue.

Using tandem mass spectrometry, researchers led by Rajasekaran Namakkal-Soorappan, Ph.D., associate professor in the UAB Department of Pathology, Division of Molecular and Cellular Pathology, looked at differential protein expression between control hearts and reductive-stress hearts in a mouse model of chronic reductive stress.

They found about 560 proteins were differentially expressed, and 32 proteins were significantly altered — 20 being upregulated and 12 downregulated. The reductive stress mouse model is caused by a constitutively active NRF2, the redox sensor that maintains redox homeostasis in cells.

Through gene ontology and pathway analysis, the researchers found that the majority of the differentially expressed proteins are involved in stress-related pathways such as antioxidants, NADPH, protein quality control and others. Proteins involved in mitochondrial respiration, lipophagy and cardiac rhythm were dramatically decreased in the reductive stress hearts.

The most significantly changed subset of proteins was in the glutathione family. Glutathione is an antioxidant, active in redox homeostasis, that can exist in a reduced or oxidized form.

Surprisingly, the levels of about half of 104 altered proteins were found not to correlate with levels of their messenger RNAs, the gene message that is read by ribosomes to make a protein. The reason for this asynchrony is not known.

In association with the altered proteome, the reductive stress mice displayed pathological cardiac remodeling. This cardiomyopathy makes it harder for the heart to pump blood, and it can lead to heart failure. The researchers also found post-translational modifications such as oxidation, N-ethylmaleimide, methionine loss and acetylation in the reductive stress hearts.

“Under reductive stress, we observed downregulation of several myocardial adaptation or rescue pathways and upregulation of pathophysiological processes, which are associated with reductive stress cardiomyopathy over time,” Namakkal-Soorappan said. “Thus, our results provide a rationale to develop personalized antioxidant therapeutic strategies to avoid reductive stress-mediated proteome alterations in humans.”

The report, “Tandem Mass Tagging based identification of proteome signatures for reductive stress cardiomyopathy,” is published in Frontiers in Cardiovascular Medicine.

Co-authors with Namakkal-Soorappan are Sini Sunny, Arun Jyothidasan and Steven Pogwizd, UAB Department of Pathology; Cynthia L. David and Krishna Parsawar, the University of Arizona; Arul Veerappan, New York University School of Medicine; and Dean P. Jones, Emory University.

In research publications, Namakkal-Soorappan lists his name as Namakkal S. Rajasekaran. The UAB Department of Pathology is part of the Marnix E. Heersink School of Medicine.



Journal

Frontiers in Cardiovascular Medicine

DOI

10.3389/fcvm.2022.848045

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Tandem Mass Tagging based identification of proteome signatures for reductive stress cardiomyopathy

Article Publication Date

13-Jun-2022

COI Statement

None

Share14Tweet9Share2ShareShareShare2

Related Posts

Science image

How the brain gathers threat cues and turns them into fear

August 16, 2022
Cell mapping close to the bone

Cell mapping close to the bone

August 16, 2022

Male spiders maximize sperm transfer to counter female cannibalism

August 16, 2022

Formative years in hyenas: The long-term impact of growing up in good or tough conditions

August 16, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesZoology/Veterinary ScienceVaccineUniversity of WashingtonVirusViolence/CriminalsWeather/StormsUrogenital SystemVehiclesWeaponryVirologyUrbanization

Recent Posts

  • A fast, accurate, equipment-free diagnostic test for SARS-CoV-2 and its variants
  • Gwangju Institute of Science and Technology scientists realize large-area organic solar cells that are low-cost, flexible, and efficient
  • Old drug, new trick: Researchers find combining antiviral drugs and antibody therapy could treat seasonal flu and help prevent next flu pandemic
  • How the brain gathers threat cues and turns them into fear
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In