• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, March 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The promise of greener power generation

Bioengineer by Bioengineer
December 5, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © 2016 KAUST

Modeling the combustion of fossil fuels by KAUST researchers has helped to characterize some of the components of methane, laying the foundations for greener power generation1.

In energy production, incomplete combustion of fossil fuels, like natural gas, causes the release of air pollutants, such as soot, carbon monoxide, and nitrogen oxides, which are harmful to our health and the environment.

Applying an external electrical field to control the combustion process is known to reduce the formation of these pollutants, but the mechanism for this is not fully understood. This spurred Aamir Farooq and colleagues at the Clean Combustion Research Center at KAUST to develop a catalog of the compounds formed during the combustion of methane, the primary component of natural gas, which may lead to the design of more efficient gas turbines and less polluting power plants.

"Controlling the charged particles allows a leaner, higher air-to-fuel mix, flame to be burned at lower temperatures, providing a more complete and efficient combustion of the fuel and a reduction in the formation of pollutants," explains Farooq.

Positively charged particles, called cations, are formed when electrons are stripped from their atoms during combustion. These are less abundant, often by many orders of magnitude, than the neutral molecules also formed which makes observing the formation and behavior of these ions a significant technical challenge.

To overcome this, the researchers used a McKenna burner to produce a stable, low-pressure methane-oxygen-argon flame. They employed a specially-designed molecular beam mass spectrometer to measure the ions formed in the flame, allowing them to be distinguished from the more abundant neutral (uncharged) compounds.

"We were able to measure a wide range of ions, allowing us to understand how they form and decay, and lead to the formation of other ions," explains Farooq. "A surprising and significant observation was the relatively large concentrations of ions other than hydronium."

The presence of hydronium indicates the acidity of the flame–the more acidic the flame the more favorable are the conditions for forming soot particles; and so measuring its relative concentration is crucial to reducing soot pollution. Identifying significant deficiencies in current ion models, the work proposes improvements for simulating ion formation and behavior–new work is considering the ions produced from heavier compounds in natural gas, such as ethane and propane

"Our work is the first attempt to identify the cations formed in the combustion of low-pressure methane, and represents a major step towards the use of external electric fields for generating cleaner power," says Farooq.

###

Media Contact

Michelle D'Antoni
[email protected]

http://kaust.edu.sa/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Figure 1

Senescence and extracellular vesicles: novel partners in vascular amyloidosis

March 29, 2023
Groundbreaking Lymphoma Tumor Model Paves Way for New Therapies

Groundbreaking lymphoma tumor model paves way for new therapies

March 29, 2023

Mimicking biological enzymes may be key to hydrogen fuel production

March 29, 2023

Downregulation of angulin-1/LSR induces malignancy in lung adenocarcinoma

March 29, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    67 shares
    Share 27 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Senescence and extracellular vesicles: novel partners in vascular amyloidosis

Groundbreaking lymphoma tumor model paves way for new therapies

Mimicking biological enzymes may be key to hydrogen fuel production

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In