• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The positive outlooks of studying negatively-charged chiral molecules

Bioengineer by Bioengineer
March 6, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

From the difference in taste of spearmint and fennel, to the consequences of a drug, that either cures morning sickness or causes birth deformities, chirality and the properties of enantiomers, which trigger these differences, are known to be a crucial aspect of biological processes. Despite a pair of enantiomers’ distinct biological behavior, their similar chemical structures make them difficult to distinguish by analytical or spectroscopic methods. Much effort has gone into finding chiral discrimination techniques that can match nature’s ability to differentiate between increasingly small samples of two enantiomers.

Chirality molecules

Credit: © FHI

From the difference in taste of spearmint and fennel, to the consequences of a drug, that either cures morning sickness or causes birth deformities, chirality and the properties of enantiomers, which trigger these differences, are known to be a crucial aspect of biological processes. Despite a pair of enantiomers’ distinct biological behavior, their similar chemical structures make them difficult to distinguish by analytical or spectroscopic methods. Much effort has gone into finding chiral discrimination techniques that can match nature’s ability to differentiate between increasingly small samples of two enantiomers.

In the past two decades, a new wave of chiral discrimination techniques has emerged, which exhibit chiral sensitives that are magnitudes greater than their predecessors. This increased sensitivity allows for study of isolated chiral molecules in the gas-phase, at very low concentrations of initial sample. One of these contemporary techniques, which holds significant analytical promise, is known as photoelectron circular dichroism (PECD) spectroscopy. PECD is a chiral optical effect that emerges in the photoemission of electrons from a sample of chiral molecules, when illuminated with chiral light (ie. circularly polarized light). The effect is a difference in the average direction the electrons depart the molecular sample (either in the forward or backward direction). This direction is a function of the handedness of light and the enantiomer being probed. This effect is incredibly sensitive to many characteristics of a chiral molecule leading to an effect that is exceptionally perceptive to the chiral potential of a molecule.

Although studies of PECD have historically been carried out on neutral molecules, researchers at the Fritz Haber Institute have explored this effect in anions. The use of anions for PECD spectroscopy has a few important analytical advantages: First, as anions are charged particles, ion optics can be used for mass selection. Often, industrial chiral samples are known to be multi-component. The addition of mass selective capabilities would enable the isolation of target molecules before the photoemission process, thus simplifying final analysis. In addition, as this effect manifests through the removal of an electron from a chiral molecule, lower energies for electron detachment are preferential, as they allow for the use of commercially-available table-top lasers. Ionization of an electron from a closed-shell neutral molecule requires either high energy synchrotron radiation or a multiphoton process by visible or near-UV lasers. The smaller photon energies required for detachment of the extra electron in anions are accessible by common table-top lasers through single-photon detachment processes.

The research team in the Molecular Physics department has recorded a energy-resolved PECD signal for a mass-selected anion, for the first time. This is not only an important benchmark for the analytical possibilities of this technique, but also opens the door to understanding the differences in electron dynamics between photoionization of neutrals and photodetachment of anions. As the observation of this effect in anions has lagged two decades behind it’s observation in its neutral counterpart, comparisons of these photoemission processes could unlock comprehension of the universal dynamics that govern the PECD effect. In their initial findings, the research team has demonstrated a PECD effect surprisingly similar in magnitude to its neutral counterpart, and an effect that persists at much higher electron kinetic energies than was to be expected, when considering conventional theoretical descriptions of electron photodetachment. These results reveal a current gap in knowledge of this effect, which necessitates further investigation.



Journal

Angewandte Chemie

DOI

10.1002/anie.202212020

Article Title

Imaging Photoelectron Circular Dichroism in the Detachment of Mass-Selected Chiral Anions

Article Publication Date

2-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Cloud tomography

New method for fast, efficient and scalable cloud tomography

March 28, 2023
A series of studies reveal the molecular mechanisms of neurological and cardiovascular diseases

Molecular mechanisms of disease pathophysiology: Journal of Pharmaceutical Analysis articles provide novel insights

March 28, 2023

Significant disparities in breast cancer care persist, but surgeons can drive change

March 28, 2023

SwRI creates innovative, efficient hydrogen compressor for FCEV refueling stations

March 28, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New method for fast, efficient and scalable cloud tomography

Molecular mechanisms of disease pathophysiology: Journal of Pharmaceutical Analysis articles provide novel insights

Significant disparities in breast cancer care persist, but surgeons can drive change

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In