• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The perfect pour: model predicts beer head features

Bioengineer by Bioengineer
February 14, 2023
in Chemistry
Reading Time: 3 mins read
0
Beer foam formation side views
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, Feb. 14, 2023 – From creating drinks with distinctive looks to providing aromas for connoisseurs, beer foam is big business. The complex interplay between the components of a beer, the vessel from which it’s poured, and the glass it’s poured into has garnered plenty of attention from researchers, brewers, and drinkers. A new study looks to provide the most accurate predictions for how a beer will foam.

Beer foam formation side views

Credit: Tizian Bauer and Wenjing Lyu

WASHINGTON, Feb. 14, 2023 – From creating drinks with distinctive looks to providing aromas for connoisseurs, beer foam is big business. The complex interplay between the components of a beer, the vessel from which it’s poured, and the glass it’s poured into has garnered plenty of attention from researchers, brewers, and drinkers. A new study looks to provide the most accurate predictions for how a beer will foam.

Researchers have analyzed brewing with numerical simulations to predict an array of beer foam features. Publishing their work in Physics of Fluids, by AIP Publishing, Lyu et al. demonstrate that their model can determine foam patterns, heights, stability, beer/foam ratio, and foam volume fractions.

The study presents the first use of a computational approach called a multiphase solver to tackle beer heads.

“Simulation of a bottom-up pouring process using a multiphase solver is a complex task that involves modeling the physical and chemical interactions that occur during the process, such as fluid dynamics, heat and mass transfer, and chemical reactions,” said author Wenjing Lyu. “By using a multiphase solver, it is possible to accurately predict the behavior of the system and optimize the design of the nozzle outlets and the cup geometry to ensure the fastest possible bottom-up pouring under various conditions such as pressure, temperature, and carbonation.”

To tackle this task, the group partnered with Einstein 1, a startup developing a new bottom-up tapping system in which the nozzle pushes up a movable magnet on the bottom of a glass to create a temporary inlet. As the glass fills, the magnet moves back into place and the beverage is ready to drink. After repeatability studies to establish stable pouring conditions, they assembled a model that was then validated with experiments.

The group found that foam from Einstein 1’s tapping system is generated only in the first moments of pouring. Higher temperatures and pressures yielded more foam.

After that, beer’s liquid phase kicked in. Determined in large part by bubble size, the beer’s foam phase slowly decayed, taking approximately 25 times longer to fully fizzle out than it took the foam to form.

Alongside further optimizing their computational approaches, the group next looks to study the effects of nozzle shapes.

“This will help in controlling foam formation, reducing consumption and pouring time, and improving the overall efficiency of the pouring process,” Lyu said. “By accurately simulating the foaming process, our model can help to improve the quality of the final product, reduce costs, and increase productivity in industries such as food and beverage, chemical, and others.”

###

The article “Experimental and numerical investigation of beer foam” is authored by Wenjing Lyu, Tizian Bauer, Bernhard Gatternig, Antonio Delgado, and Thomas Erling Schellin. It will appear in Physics of Fluids on Feb. 14, 2023 (DOI: 10.1063/5.0132657). After that date, it can be accessed at https://doi.org/10.1063/5.0132657.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###



Journal

Physics of Fluids

DOI

10.1063/5.0132657

Article Title

Experimental and numerical investigation of beer foam

Article Publication Date

14-Feb-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomedicine: A New Frontier in Targeting Metastasis

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

New Phthalide Compounds Show Promise as Antifungal Agents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.