• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The optical fiber that keeps data safe even after being twisted or bent

Bioengineer by Bioengineer
January 10, 2023
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Optical fibres are the backbone of our modern information networks. From long-range communication over the internet to high-speed information transfer within data centres and stock exchanges, optical fibre remains critical in our globalised world.

Optical fibre in the University of Bath lab

Credit: Nathan Roberts

Optical fibres are the backbone of our modern information networks. From long-range communication over the internet to high-speed information transfer within data centres and stock exchanges, optical fibre remains critical in our globalised world.

Fibre networks are not, however, structurally perfect, and information transfer can be compromised when things go wrong. Tßo address this problem, physicists at the University of Bath in the UK have developed a new kind of fibre designed to enhance the robustness of networks. This robustness could prove to be especially important in the coming age of quantum networks.

The team has fabricated optical fibres (the flexible glass channels through which information is sent) that can protect light (the medium through which data is transmitted) using the mathematics of topology. Best of all, these modified fibres are easily scalable, meaning the structure of each fibre can be preserved over thousands of kilometres.

The Bath study is published in the latest issue of Science Advances.

Protecting light against disorder

At its simplest, optical fibre, which typically has a diameter of 125 µm (similar to a thick strand of hair) comprises a core of solid glass surrounded by cladding. Light travels through the core, where it bounces along as though reflecting off a mirror.

However, the pathway taken by an optical fibre as it crisscrosses the landscape is rarely straight and undisturbed: turns, loops, and bends are the norm. Distortions in the fibre can cause information to degrade as it moves between sender and receiver. “The challenge was to build a network that takes robustness into account,” said Physics PhD student Nathan Roberts, who led the research.

“Whenever you fabricate a fibre-optic cable, small variations in the physical structure of the fibre are inevitably present. When deployed in a network, the fibre can also get twisted and bent. One way to counter these variations and defects is to ensure the fibre design process includes a real focus on robustness. This is where we found the ideas of topology useful.”

To design this new fibre, the Bath team used topology, which is the mathematical study of quantities that remain unchanged despite continuous distortions to the geometry. Its principles are already applied to many areas of physics research. By connecting physical phenomena to unchanging numbers, the destructive effects of a disordered environment can be avoided.

The fibre designed by the Bath team deploys topological ideas by including several light-guiding cores in a fibre, linked together in a spiral. Light can hop between these cores but becomes trapped within the edge thanks to the topological design. These edge states are protected against disorder in the structure.

Bath physicist Dr Anton Souslov, who co-authored the study as theory lead, said: “Using our fibre, light is less influenced by environmental disorder than it would be in an equivalent system lacking topological design.

“By adopting optical fibres with topological design, researchers will have the tools to pre-empt and forestall signal-degrading effects by building inherently robust photonic systems.”

Theory meets practical expertise

Bath physicist Dr Peter Mosley, who co-authored the study as experimental lead, said: “Previously, scientists have applied the complex mathematics of topology to light, but here at the University of Bath we have lots of experience physically making optical fibres, so we put the mathematics together with our expertise to create topological fibre.”

The team, which also includes PhD student Guido Baardink and Dr Josh Nunn from the Department of Physics, are now looking for industry partners to develop their concept further.

“We are really keen to help people build robust communication networks and we are ready for the next phase of this work,” said Dr Souslov.

Mr Roberts added: “We have shown that you can make kilometres of topological fibre wound around a spool. We envision a quantum internet where information will be transmitted robustly across continents using topological principles.”

He also pointed out that this research has implications that go beyond communications networks. He said: “Fibre development is not only a technological challenge, but also an exciting scientific field in its own right.

“Understanding how to engineer optical fibre has led to light sources from bright ‘supercontinuum’ that spans the entire visible spectrum right down to quantum light sources that produce individual photons – single particles of light.”

The future is quantum

Quantum networks are widely expected to play an important technological role in years to come. Quantum technologies have the capacity to store and process information in more powerful ways than ‘classical’ computers can today, as well as sending messages securely across global networks without any chance of eavesdropping.

But the quantum states of light that transmit information are easily impacted by their environment and finding a way to protect them is a major challenge. This work may be a step towards maintaining quantum information in fibre optics using topological design.



Journal

Science Advances

DOI

10.1126/sciadv.add3522

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Topological supermodes in photonic crystal fiber

Article Publication Date

21-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Katerina Mastovska

Dr. Katerina Mastovska named AOAC INTERNATIONAL Deputy Executive Director and Chief Science Officer

January 27, 2023
magnetar eruption

Volcano-like rupture could have caused magnetar slowdown

January 27, 2023

Stability of perovskite solar cells reaches next milestone

January 27, 2023

From AI software to surgical robots

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In