• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The neural mechanisms that inhibit slow muscle activity during fast swimming in fish

Bioengineer by Bioengineer
May 22, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NIBB

In vertebrate muscles, there are slow and fast muscle fibers. Fast muscle fibers contract rapidly, but are prone to fatigue. Slow muscle fibers have the property of slow contraction, but resist to fatigue. Vertebrates use fast and slow muscles properly depending on the situation.

Using zebrafish larvae, Assistant Professor Yukiko Kimura and Professor Shin-Ichi Higashijima of the National Institute for Basic Biology in Japan have discovered neural mechanisms that suppress slow muscle activity in fish swimming at high speeds. The research results were published in the May 22, 2019 issue of Nature Communications.

The research group conducted research using genetically modified zebrafish from which specific spinal interneurons were removed. Motor neuron activities were compared between normal zebrafish larvae and zebrafish larvae from which said neurons were removed. As a result, they observed that V1 neurons, which are a type of inhibitory interneuron in the spinal cord, suppress the firing of motor neurons that control slow muscles during fast swimming. This is considered to be a mechanism that enables high-speed swimming by preventing fast muscle activity from being disturbed by slow muscle activity.?

Dr. Kimura said “It is possible that mammalian V1 neurons may work in the same way as fish. In fish, fast and slow muscles are physically separated, but in the case of mammals, fast and slow muscle fibers are intermingled, making a similar analysis more difficult. Viewing these results as a catalyst for further study, it is hoped that analysis of the control mechanism of mammalian slow muscle fiber activity, including suppression mechanisms of their activities, can be better advanced.”

###

Nature Communications

“Regulation of locomotor speed and selection of active sets of neurons by V1 neurons” by Yukiko Kimura, Shin-ichi Higashijima

DOI: 10.1038/s41467-019-09871-x

Media Contact
NIBB Office of PR
[email protected]

Original Source

http://www.nibb.ac.jp/en/press/2019/05/22.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-09871-x

Tags: BiologyneurobiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing the K-NHSPSC: Korean Patient Safety Culture Insights

December 20, 2025

Spot Urine CA 19-9: New Insights in Pediatric Hydronephrosis

December 20, 2025

Discharge Choices for Elderly Surgical Patients Explored

December 20, 2025

Health Needs Influence Care Utilization in Women Veterans

December 20, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing the K-NHSPSC: Korean Patient Safety Culture Insights

Spot Urine CA 19-9: New Insights in Pediatric Hydronephrosis

Discharge Choices for Elderly Surgical Patients Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.