• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The Milky Way kidnapped several tiny galaxies from its neighbor

Bioengineer by Bioengineer
October 10, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC Riverside-led research shows our galaxy is undergoing a massive merger with its largest satellite galaxy, the Large Magellanic Cloud

IMAGE

Credit: Ethan Jahn, UC Riverside.

RIVERSIDE, Calif. — Just like the moon orbits the Earth, and the Earth orbits the sun, galaxies orbit each other according to the predictions of cosmology.

For example, more than 50 discovered satellite galaxies orbit our own galaxy, the Milky Way. The largest of these is the Large Magellanic Cloud, or LMC, a large dwarf galaxy that resembles a faint cloud in the Southern Hemisphere night sky.

A team of astronomers led by scientists at the University of California, Riverside, has discovered that several of the small — or “dwarf” — galaxies orbiting the Milky Way were likely stolen from the LMC, including several ultrafaint dwarfs, but also relatively bright and well-known satellite galaxies, such as Carina and Fornax.

The researchers made the discovery by using new data gathered by the Gaia space telescope on the motions of several nearby galaxies and contrasting this with state-of-the-art cosmological hydrodynamical simulations. The UC Riverside team used the positions in the sky and the predicted velocities of material, such as dark matter, accompanying the LMC, finding that at least four ultrafaint dwarfs and two classical dwarfs, Carina and Fornax, used to be satellites of the LMC. Through the ongoing merger process, however, the more massive Milky Way used its powerful gravitational field to tear apart the LMC and steal these satellites, the researchers report.

“These results are an important confirmation of our cosmological models, which predict that small dwarf galaxies in the universe should also be surrounded by a population of smaller fainter galaxy companions,” said Laura Sales, an assistant professor of physics and astronomy, who led the research team. “This is the first time that we are able to map the hierarchy of structure formation to such faint and ultrafaint dwarfs.”

The findings have important implications for the total mass of the LMC and also on the formation of the Milky Way.

“If so many dwarfs came along with the LMC only recently, that means the properties of the Milky Way satellite population just 1 billion years ago were radically different, impacting our understanding of how the faintest galaxies form and evolve,” Sales said.

Study results appear in the November 2019 issue of the Monthly Notices of the Royal Astronomical Society.

Dwarf galaxies are small galaxies that contain anywhere from a few thousand to a few billion stars. The researchers used computer simulations from the Feedback In Realistic Environments project to show the LMC and galaxies similar to it host numerous tiny dwarf galaxies, many of which contain no stars at all — only dark matter, a type of matter scientists think constitutes the bulk of the universe’s mass.

“The high number of tiny dwarf galaxies seems to suggest the dark matter content of the LMC is quite large, meaning the Milky Way is undergoing the most massive merger in its history, with the LMC, its partner, bringing in as much as one third of the mass in the Milky Way’s dark matter halo — the halo of invisible material that surrounds our galaxy,” said Ethan Jahn, the first author of the paper and a graduate student in Sales’ research group.

Jahn explained that the number of tiny dwarf galaxies the LMC hosts may be higher than astronomers previously estimated, and that many of these tiny satellites have no stars.

“Small galaxies are hard to measure, and it’s possible that some already-known ultrafaint dwarf galaxies are in fact associated with the LMC,” he said. “It’s also possible that we will discover new ultrafaints that are associated with the LMC.”

Dwarf galaxies can either be satellites of larger galaxies, or they can be “isolated,” existing on their own and independent of any larger object. The LMC used to be isolated, Jahn explained, but it was captured by the gravity of the Milky Way and is now its satellite.

“The LMC hosted at least seven satellite galaxies of its own, including the Small Magellanic Cloud in the Southern Sky, prior to them being captured by the Milky Way,” he said.

Next, the team will study how the satellites of LMC-sized galaxies form their stars and how that relates to how much dark matter mass they have.

“It will be interesting to see if they form differently than satellites of Milky Way-like galaxies,” Jahn said.

###

Sales and Jahn were joined in the study Andrew Wetzel of UC Davis; Michael Boylan-Kolchin of the University of Texas at Austin; T. K. Chan of UC San Diego; Kareem El-Badry of UC Berkeley; and Alexandres Lazar and James S. Bullock of UC Irvine.

The research was supported by grants to Sales from NASA and the Hellman Foundation.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California’s diverse culture, UCR’s enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email [email protected].

Media Contact
Iqbal Pittalwala
[email protected]
951-827-6050

Related Journal Article

http://dx.doi.org/10.1093/mnras/stz2457

Tags: AstronomyAstrophysicsChemistry/Physics/Materials SciencesExperiments in SpaceScience/MathSpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025
Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    45 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Learning Predicts Myopia Severity Accurately

Whole Brain Radiotherapy vs. Integrated Boost Efficiency

Metabolic Traits Conserved and Diverged in Tumors, Xenografts

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.