• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, July 1, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The mechanisms regulating the balance between the formation of neurons and the maintenance of stem cells in the formation of the brain revealed

Bioengineer by Bioengineer
June 22, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Anew study by the Neuronal Dynamics Research Group at UPF has elucidated the cellular and molecular mechanisms that regulate the balance between the differentiation of neurons and the maintenance of progenitor cells during the construction of the embryonic brain. The study, conducted in the zebrafish model, has been published in the journal Cell Reports.

Figure CEP: Notch activity (green) in embryonic brain stem cells (magenta).

Credit: UPF authors

Anew study by the Neuronal Dynamics Research Group at UPF has elucidated the cellular and molecular mechanisms that regulate the balance between the differentiation of neurons and the maintenance of progenitor cells during the construction of the embryonic brain. The study, conducted in the zebrafish model, has been published in the journal Cell Reports.

In vertebrates, the central nervous system is formed from an embryonic structure divided into three vesicles of the brain and the spinal cord. The hindmost vescile is called the rhombencephalus and is preserved in all vertebrates. It will result in essential adult derivates for the regulation of breathing, heart rate, etc. During embryonic development, the posterior brain is subdivided into seven segments, called rhombomeres.  

During embryonic development, coordination takes place between the proliferation of progenitor stem cells responsible for the organ’s growth and its differentiation into neurons. For this reason, this ability to give rise to neurons is localized to specific sites. 

Now, the group led by Cristina Pujades at the UPF Department of Medicine and Life Sciences (MELIS) has investigated how rhombomeric boundary cells give rise to neurons while maintaining a proliferative reservoir of progenitor stem cells. “In the initial stages of embryo formation it is important to maintain a number of stem cells that allow the formation of neurons later on”, sets out Covadonga F. Hevia, first author of the study.

Cristina Pujades, study coordinator: “during brain formation, the processes of proliferation and differentiation must be maintained, they must be regulated very precisely, and each step must occur at the right time. This coordination is crucial because any problems during the process can result in neural disorders”.

They do this by asymmetric divisions, in other words, when a progenitor cell divides, it gives a daughter cell that becomes a neuron and stops dividing, and another daughter cell that remains a progenitor. This allows retaining the stem cell reservoir over time. “In this work we have discovered that the asymmetric cell division triggered by the so-called Notch signalling pathway allows rhombomeric boundary cells to form neurons while maintaining stem cells for later on”, she adds.

“The cells express markers, but, as they vary during the process, when they ceased to express them we lost track of them and we could no longer follow them. Now, the CRISPR technique allows us to insert a reporter gene and generate a transgenic zebrafish line where the cells we are interested in express a fluorescent marker. We can thus observe them, and follow them over time, see how they divide, what type of neurons they give rise to, etc.”, explains Carolyn Engel-Pizcueta, author of the article.

In the words of Cristina Pujades, study coordinator: “during brain formation, the processes of proliferation and differentiation must be maintained, they must be regulated very precisely, and each step must occur at the right time. This coordination is crucial because any problems during the process can result in neural disorders”, Pujadas concludes.

Reference article:

Hevia, CF, Engel-Pizcueta, C, Udina, F and Pujades C. The neurogenic fate of the hindbrain boundaries relies on Notch3-dependent asymmetric cell divisions. Cell Reports, 7 June 2022. DOI: https://doi.org/10.1016/j.celrep.2022.110915



Journal

Cell Reports

DOI

10.1016/j.celrep.2022.110915

Method of Research

Experimental study

Subject of Research

Animals

Article Title

The neurogenic fate of the hindbrain boundaries relies on Notch3-dependent asymmetric cell divisions

Article Publication Date

7-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Whale Breaching

Whales learn songs from each other in a cultural ‘deep dive’

July 1, 2022
Red crossbill

Birds warned of food shortages by neighbor birds change physiology and behavior to prepare

July 1, 2022

Aging-US | Time makes histone H3 modifications drift in mouse liver

June 30, 2022

CDC Designates New England Center of Excellence in Vector-borne Diseases at UMass Amherst

June 30, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesVirusViolence/CriminalsVehiclesWeather/StormsUniversity of WashingtonUrbanizationVirologyWeaponryVaccineZoology/Veterinary ScienceUrogenital System

Recent Posts

  • Putting the brakes on a bacterium that is a major cause of GI distress
  • Hearing better with skin than ears
  • The formation process of unstable unknown radical states visualized clearly for the first time!
  • Development of ultra-thin, high-efficiency piezoelectric elements that generate electricity from movements in daily life
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....