• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The human brain is prepared to follow the rhythm of a song or of a dance

Bioengineer by Bioengineer
November 26, 2019
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

So reveals a study that explores the relationship between the rhythmic structure of music and the spatial dimension of sound

IMAGE

Credit: UPF


When listening to a song or watching a dance, humans tend to follow the rhythm of the music. This is because one fundamental aspect of music is its rhythm, the way we synchronize with the temporal regularities of a melody or a dance. A recent study explores how our brain fuses with musical rhythm and the extent to which humans share this ability with other animals.

Alexandre Celma-Miralles and Juan Manuel Toro, an ICREA research professor with the Department of Information and Communication Technologies (DTIC), and members of the Comparative Cognition and Language (LCC) research group at the Center for Brain and Cognition (CBC) at UPF, explain this peculiarity in an article published this November in the journal Brain and Cognition.

“This study explores the relationship between the rhythmic structure of music and the spatial dimension of sound. We study how the brain interacts with sounds that are spatially separate to build up a metrical structure”, explain Celma-Miralles and Toro, the authors of the study.

So, they compared the neural responses of professional musicians with those of untrained listeners while both groups listened to a waltz. In one of the study experiments, the participants had to pay attention to sounds defined by their spatial position (the sounds were separated in space). In another experiment the participants had to pay attention to a visual distraction. Data for the study were obtained from the frequencies of EEG recordings of each subject.

Rhythm and beat are enhanced by experience

The researchers found that regardless of the participant’s musical training, the brains of all listeners synchronized with the rhythm. The results also showed that musicians’ neuronal responses were much stronger and more resistant to distractions than those of non-musicians. That is, the study revealed that training facilitates rhythmic synchronization.

As the researchers state, “the most relevant point of this study is that it demonstrates that our brains are prepared to follow rhythm, regardless of whether we listen to a song or watch a dance”. This reinforces the idea that the neuronal processing of rhythm and beat is facilitated by previous experience with rhythmic events during long periods of formal musical training.

###

Media Contact
UPF
[email protected]

Original Source

https://www.upf.edu/web/e-noticies/home/-/asset_publisher/wEpPxsVRD6Vt/content/id/230550956/maximized#.XdzyeehKiUk

Related Journal Article

http://dx.doi.org/10.1016/j.bandc.2019.103594

Tags: BiochemistryBiologyChemistry/Physics/Materials SciencesMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Oxidized Phosphatidylcholines Trigger MS Neurodegeneration via IL-1β

Oxidized Phosphatidylcholines Trigger MS Neurodegeneration via IL-1β

December 1, 2025

NICU Safe Sleep: Nursing and Parent Insights

December 1, 2025

Boosting Complementary Medicine Understanding: A Review

December 1, 2025

Exploring Egypt’s Universal Health Coverage: Stakeholder Insights

December 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Climate Benefits of U.S. Rangeland Management Evaluated

Nanoplastic Reference Materials Advance Biological, Methodological Studies

Unveiling Eryngium thyrsoideum: Insights into Its Benefits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.