• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The human brain is prepared to follow the rhythm of a song or of a dance

Bioengineer by Bioengineer
November 26, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

So reveals a study that explores the relationship between the rhythmic structure of music and the spatial dimension of sound

IMAGE

Credit: UPF


When listening to a song or watching a dance, humans tend to follow the rhythm of the music. This is because one fundamental aspect of music is its rhythm, the way we synchronize with the temporal regularities of a melody or a dance. A recent study explores how our brain fuses with musical rhythm and the extent to which humans share this ability with other animals.

Alexandre Celma-Miralles and Juan Manuel Toro, an ICREA research professor with the Department of Information and Communication Technologies (DTIC), and members of the Comparative Cognition and Language (LCC) research group at the Center for Brain and Cognition (CBC) at UPF, explain this peculiarity in an article published this November in the journal Brain and Cognition.

“This study explores the relationship between the rhythmic structure of music and the spatial dimension of sound. We study how the brain interacts with sounds that are spatially separate to build up a metrical structure”, explain Celma-Miralles and Toro, the authors of the study.

So, they compared the neural responses of professional musicians with those of untrained listeners while both groups listened to a waltz. In one of the study experiments, the participants had to pay attention to sounds defined by their spatial position (the sounds were separated in space). In another experiment the participants had to pay attention to a visual distraction. Data for the study were obtained from the frequencies of EEG recordings of each subject.

Rhythm and beat are enhanced by experience

The researchers found that regardless of the participant’s musical training, the brains of all listeners synchronized with the rhythm. The results also showed that musicians’ neuronal responses were much stronger and more resistant to distractions than those of non-musicians. That is, the study revealed that training facilitates rhythmic synchronization.

As the researchers state, “the most relevant point of this study is that it demonstrates that our brains are prepared to follow rhythm, regardless of whether we listen to a song or watch a dance”. This reinforces the idea that the neuronal processing of rhythm and beat is facilitated by previous experience with rhythmic events during long periods of formal musical training.

###

Media Contact
UPF
[email protected]

Original Source

https://www.upf.edu/web/e-noticies/home/-/asset_publisher/wEpPxsVRD6Vt/content/id/230550956/maximized#.XdzyeehKiUk

Related Journal Article

http://dx.doi.org/10.1016/j.bandc.2019.103594

Tags: BiochemistryBiologyChemistry/Physics/Materials SciencesMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

DCTPP1 Controls Oxidative Stress Through AUF1 in Trophoblasts

DCTPP1 Controls Oxidative Stress Through AUF1 in Trophoblasts

August 23, 2025
New Insights into Exercise’s Molecular Benefits in Parkinson’s

New Insights into Exercise’s Molecular Benefits in Parkinson’s

August 23, 2025

Muscle Dysmorphia and Body Image in Men

August 23, 2025

Synthetic MRI Reveals Brain Changes in Parkinson’s Types

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

Ancient Skull Sheds Light on Plotopteridae Origins

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.