• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 13, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

The HLF-gene controls the generation of our long-term immune system

Bioengineer.org by Bioengineer.org
January 21, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
David Bryder Credits: Gunnar Menander

A research group at Lund University in Sweden has found that when the HLF (hepatic leukemia factor) gene -which is expressed in immature blood cells – does not shut down on time, we are unable to develop a functional long-term immune system. This could be a very early stage of leukemia.

Blood stem cells give rise to all of our blood cells: the red blood cells that transport oxygen, the platelets that enable blood coagulation, and our immune cells that protect us from infections. Immune cells can, in turn, be divided into two groups; one that consists of cells with a very short life expectancy and a natural but rather unspecific ability to counteract infections (myeloid cells), and another that, in contrast, consists of very long-lived cells (lymphocytes) that specialise in combatting specific bacteria and viruses.

“The ability of blood stem cells to form all types of blood cells is a fundamental property that is also utilised in connection with bone marrow transplants. An increased understanding of these processes is crucial as immune cells in patients who undergo bone marrow transplants are regenerated very slowly, which results in a long period of immune sensitivity”, says David Bryder who was in charge of the study.

Despite the fact that all of our genes have been mapped, it is still largely unknown how the genes are controlled. What a cell can and cannot do is governed entirely by how the cell uses its genome. David Bryder and his colleagues have searched for genes expressed in immature blood cells but which disappear in connection with their further maturation. They then discovered the HLF gene, which caught their attention for two reasons: one, the gene controls what parts of our DNA are to be used, and two, the gene is directly involved in a rare but very aggressive type of blood cancer.

“Our studies revealed that if the immature blood cells are unable to shut down the HLF gene at the correct stage of development, the lymphocytes – the long-lived immune cells – are unable to form. As a result, you will only have one type of immune defence.”

A single cell must undergo a variety of changes to become cancerous. However, the earliest changes may involve the HLF gene, which give rise to a precursor to leukemia. Patients with leukemia in which the HLF gene is involved have a very poor prognosis, but it has been difficult to generate reliable models for studying the emergence, development and possible treatment of these leukemias more thoroughly. The researchers’ long-term goal is now to identify the mechanisms that can be used to break down these aggressive leukemias.

“The knowledge and experimental model systems we developed concerning how HLF affects blood cell development enables us to map the order of gene mutations that lead to HLF-generated leukemia, which is an important next step towards our goal”, concludes David Bryder.

###

Media Contact

David Bryder
[email protected]
46-706-423-951
@lunduniversity

http://www.lu.se

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Morpho-Physiology and Seed Quality in Lasiurus sindicus

January 13, 2026
blank

Gene Expression Changes in Freeze-Tolerant Vertebrates

January 13, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026

CRISPR Targets NOTCH2NLC GGC Repeats to Treat NIID

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    72 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Morpho-Physiology and Seed Quality in Lasiurus sindicus

Gene Expression Changes in Freeze-Tolerant Vertebrates

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.