• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, August 19, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The Hippo and the Hydra

Bioengineer by Bioengineer
July 15, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study describes the formation of the body axis in the immortal freshwater polyp Hydra. It is controlled by the so-called hippo signaling pathway, a molecular biological process that, among other functions, ensures that our organs do not continue to grow indefinitely. The study was led by the Lunenfeld-Tanenbaum Research Institute in Toronto and the Washington University School of Medicine. The Department of Zoology of the University of Innsbruck, Austria, was significantly involved in the research and provided important data.

Hydra with deformed tentacles

Credit: Maria Brooun

A new study describes the formation of the body axis in the immortal freshwater polyp Hydra. It is controlled by the so-called hippo signaling pathway, a molecular biological process that, among other functions, ensures that our organs do not continue to grow indefinitely. The study was led by the Lunenfeld-Tanenbaum Research Institute in Toronto and the Washington University School of Medicine. The Department of Zoology of the University of Innsbruck, Austria, was significantly involved in the research and provided important data.

The body structure of most animals is based on an axis that runs from the head to the tail. A big question in developmental biology is how the cells of the first multicellular animals were organized and how this body axis was formed.  A new study published in the journal “Proceedings of the National Academy of Sciences” (PNAS) found that the evolutionary origins of the body axis lie in the so-called Hippo signaling pathway.

A signaling pathway shapes the organs

Signaling pathways are molecular biological processes that serve the communication between cells. Through the production and exchange of certain molecules, cells can recieve, process, and react to information from the environment or the body.

The hippo signaling pathway has an important function in higher animals, such as mammals and birds. It controls the cell division in the forming organs and ensures that they take on their correct size and three-dimensional shape. If the hippo signaling pathway is faulty, tissue thickening can occur, similar to the skin of a hippopotamus – hence the name.

Electron microscopy shows complex mechanism

A Canadian-US research cooperation, supported by the Department of Zoology at the University of Innsbruck, has described the function of this signaling pathway for the first time in evolutionary ancient organisms. The freshwater polyp hydra served as the model organism for the researchers. It is probable that the Hippo signaling pathway originated in ancient animals such as the hydra.

The working group led by Bert Hobmayer at the Department of Zoology has been intensively studying this model organism for years. Using electron microscopy, it provided important data on the internal organization of cells which are controlled by the Hippo signaling pathway.

“Hippo is a complex mechanism that is not yet fully understood in developmental biology,” says Hobmayer. “We have now found similar principles of action in the simply built hydras. However, these seem to affect the entire animals.”

The Immortal Polyp

The Hydra is a simply built animal, which is considered practically immortal.  It permanently renews its tissue, can completely replace entire parts of the body, and form an entire organism from individual cells. The Hydra reproduces asexually by forming a bud from its body, which then grows into a new clone. With each new bud, a new body axis is created.

The study shows that the Hippo signaling pathway affects the rate of cell division throughout the Hydra. This way, it also controls the emergence of new specimens. In addition to controlling tissue growth and asexual reproduction, the Hippo signaling pathway also produces signaling molecules that are necessary for the formation of a normally shaped body axis.

Thus, the researchers have not only come a big step closer to the development of an important signaling pathway. The new knowledge gained on the simply built Hydra also opens up further studies with this model organism.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2203257119

Method of Research

Experimental study

Subject of Research

Animals

Article Title

The Hippo pathway regulates axis formation and morphogenesis in Hydra

Article Publication Date

12-Jul-2022

COI Statement

The authors declare no competing interest.

Share12Tweet7Share2ShareShareShare1

Related Posts

The first sexual reproduction event earses the cost of meiosis

Novel hypotheses that answer key questions about the evolution of sexual reproduction

August 19, 2022
Augustinian friars at excavation

Medieval friars were ‘riddled with parasites’, study finds

August 19, 2022

Zhang and colleagues win an $11.2 million NIH program project grant

August 18, 2022

Touch and sight are linked before birth

August 18, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    57 shares
    Share 23 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Chi-Huey Wong awarded Tetrahedron Prize for Creativity in Organic Synthesis

    38 shares
    Share 15 Tweet 10
  • The protein signature changes during heart disease caused by reductive stress

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVaccineVirusViolence/CriminalsUrogenital SystemWeather/StormsUrbanizationZoology/Veterinary ScienceWeaponryVehiclesVaccinesVirology

Recent Posts

  • Collaborations inspired early-career NIH grant that could lead to treatment breakthroughs for a range of medical conditions
  • Novel hypotheses that answer key questions about the evolution of sexual reproduction
  • Medieval friars were ‘riddled with parasites’, study finds
  • A breakthrough in magnetic materials research could lead to novel ways to manipulate electron flow with much less energy loss
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In