• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The gut may be involved in the development of multiple sclerosis

Bioengineer by Bioengineer
December 4, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The gut has long been suspected to play a role in autoimmune disease; a research team has now identified evidence of a potential mechanism

IMAGE

Credit: RUB, Marquard


It is incompletely understood which factors in patients with multiple sclerosis (MS) act as a trigger for the immune system to attack the brain and spinal cord. A potential factor is described by a research team in the journal Proceedings of the National Academy of Sciences, PNAS. The medical researchers used an animal model to show that the protein Smad7 mobilises immune cells in the intestines which, in turn, trigger inflammation in the central nervous system. Analyses of intestinal tissue samples taken from MS patients confirmed the results, which were published online on 4 December 2019.

The study was conducted at the Department of Neurology and the Centre of Neuroimmunology at St. Josef-Hospital, university hospital of Ruhr-Universität Bochum. The Bochum-based group with biologist Dr. Steffen Haupeltshofer and neurologists Professor Simon Faissner and Professor Ingo Kleiter, formerly at the Bochum university hospital, currently at Marianne-Strauß-Klinik in Berg, collaborated with other colleagues from Bochum, Bremen, Mainz, Düsseldorf, Jülich and Rome.

Protein Smad7 activates immune cells in the intestines

The research team initially analysed the signal protein Smad7 in intestinal immune cells in mice, or more precisely: in T-cells. The researchers compared genetically modified mice with a normal and those with a particularly high quantity of Smad7 in T-cells as well as mice without any Smad7 in T-cells. They monitored if the animals developed opticospinal encephalomyelitis – a disease that mimics MS in humans.

The strongest clinical MS-like symptoms occurred in animals with an increased Smad7 level in T-cells. In their intestines, T-cells were more frequently activated, which then migrated into the central nervous system where they triggered inflammation. Moreover, the ratio of protective regulatory T-cells to pathogenic autoreactive T-cells had changed. In mice that didn’t have any Smad7 protein, no clinical signs of a MS-like disease occurred.

Results confirmed using tissue samples from patients

In the next step, the researchers analysed tissue samples taken from the intestines of 27 MS patients and compared them with samples taken from 27 healthy individuals. In the patients, they identified changes similar to those in the animal model: the signal protein Smad7 occurred more frequently in intestinal mucosa samples of MS patients than in those of healthy individuals; in addition, an abnormal ratio of regulatory to pathogenic mechanisms was identified in intestinal mucosa samples in patients.

“For other autoimmune diseases such as Crohn’s and other inflammatory bowel diseases, researchers are already aware that Smad7 offers a promising therapeutic target; our results suggest that the same is true for multiple sclerosis,” says Ingo Kleiter. “Researchers are increasingly exploring intestinal involvement in the development and progression of MS,” adds Simon Faissner.

###

About multiple sclerosis

In the Western world, multiple sclerosis is the most common cause of neurological disabilities in young people. In MS patients, the endogenous immune system damages nervous tissues. This results in significant neurological impairments such as visual impairments, numbness and paralysis. The most common type is relapsing-remitting MS, which usually changes into an insidious disability, namely the progressive type, after approximately 15 to 20 years without treatment.

Media Contact
Simon Faissner
[email protected]
49-234-509-2420

Original Source

https://news.rub.de/english/press-releases/2019-12-04-medicine-gut-may-be-involved-development-multiple-sclerosis

Related Journal Article

http://dx.doi.org/10.1073/pnas.1905955116

Tags: BiologyMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Soft Robot Intubation Device Developed at UCSB Promises to Save Lives

September 10, 2025

Indian New Mothers Experience Improved Postpartum Wellbeing with Maternal Support, While Mother-in-Law Care Linked to Lower Wellness, Study Finds

September 10, 2025

Smartwatches Identify Early PTSD Indicators in Viewers of Oct 7 Israel Attack Coverage

September 10, 2025

Eye and Blood Protein Shows Strong Link to Cognitive Performance, Study Finds

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    60 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Soft Robot Intubation Device Developed at UCSB Promises to Save Lives

New Benchmark Study Reveals Emerging Trends in Canine Behavior

Can Robots Ease Reading Anxiety in Children? A New Study from UChicago’s Department of Computer Science Explores the Possibilities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.