• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

The genome guardian turns to the dark side: Opportunity for drug discovery against cancer?

Bioengineer by Bioengineer
May 31, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Guilherme A. de Oliveira

It has long been known that abnormal changes in the p53 protein are associated with many cancers. In fact, the gene that codes the p53 protein is the one most frequently mutated in human cancers. The protein, known as the guardian of the genome, has the main role of suppressing tumor formation and in so doing it blocks cancer development. But once mutated, the p53 protein not only stops working as expected, it also acquires new functions and characteristics that are catastrophic for the cell.

One of the characteristics observed in mutated p53 is the tendency to form amyloid aggregates, which are structures that no longer display the protein original 3D conformation, stick together, and are resistant to degradation. These amyloid aggregates build up in the tissue, are very harmful, and present a pathogen-like behavior where mutants highjack normal counterparts and convert them into the amyloid form. These aggregates have been found in many cancer patients and in other protein-misfolding diseases such as Alzheimer's and Parkinson's.

Somewhere along its transition from its native protein state to the deleterious amyloid form, p53 assumes a transient state as a molten globule (MG). MG-state p53, or pre-aggregate MG conformers, have not yet formed aggregates but are nevertheless very prone to doing so, which makes them a promising drug target. Thus, understanding the behavior of MG-state p53s and what prompts them into this conformation in the first place is crucial.

Targeting MG-states has been a real challenge because these states have a very short lifetime before they aggregate into amyloid structures. However, using a combination of techniques that include fluorescence spectroscopy, chemical and physical approaches, a research group led by Jerson Lima Silva at the Federal University of Rio de Janeiro, Brazil, has developed a new strategy that traps p53 conformers in solution so they can be observed before turning into amyloid oligomers and fibers. The group used the technique to study p53 and two other related proteins, p63 and p73. Of the three, p53 is the one that is least stable and most prone to aggregation.

While in real life the native state of p53 may be disrupted by the action of viruses (such as HPV), ultraviolet radiation (such as sun light) or exposure to carcinogens (tobacco smoke, nitropyrene emitted in diesel combustion, among many others), in the lab the research group applied different concentrations of chemicals and/or high hydrostatic pressure to disrupt the equilibrium of native proteins, as detected by fluorescence and Nuclear Magnetic Resonance. The strategy is believed to recapitulate the same unfolding and aggregation processes that take place inside the body of cancer patients and allows researchers to get a closer look at the conformational changes suffered by individual amino acid residues before the molecule undergoes unfolding. This stage is a main step towards the amyloid state.

"A clear understanding of all the changes that occur in the molecule before it assumes the amyloid state may allow us to manipulate this process and have the option of either rescuing the native state of the p53 protein or blocking its transformation into amyloid oligomers and fibrils," says Guilherme A. de Oliveira, one of the study's co-authors.

In fact, both strategies have been previously used against mutated p53 by different groups but no clear results have been produced. With this study, the group presents a new technique for trapping p53 conformers in solution and claims that the p53 pre-amyloidogenic form is a promising alternative target for drug discovery.

The paper entitled "Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer" is published online in The Journal of Biological Chemistry.

###

Media Contact

Jerson L. Silva
[email protected]
55-219-993-90502

http://www.publicase.com.br/

Share12Tweet8Share2ShareShareShare2

Related Posts

Tumor-Derived Organoids from Circulating Cells: Unlocking Metastasis Mechanisms and Advancing Precision Medicine Platforms

September 15, 2025

Marine Algae Compounds Fight Pancreatic Cancer Mechanisms

September 15, 2025

Colorectal Cancer Cells Stimulate Collagen Production in Cancer-Associated Fibroblasts Through TGF-β1-Triggered Glycine Synthesis: PHGDH Emerges as a Potential Therapeutic Target

September 15, 2025

Chemically Modified STn Glycoconjugate Vaccine Boosts Antitumor Immune Response

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

In-Situ Molecular Passivation Boosts Pure-Blue Perovskite LEDs Through Vacuum Thermal Evaporation

Mount Sinai Researchers Discover Electrical Stimulation May Enhance Predictions for Recovery from Acute Nerve Injuries

Tumor-Derived Organoids from Circulating Cells: Unlocking Metastasis Mechanisms and Advancing Precision Medicine Platforms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.