• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, June 25, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The evolutionary secret of H. pylori to survive in the stomach

Bioengineer by Bioengineer
December 20, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Professor Frédéric Veyrier's most recent research, in collaboration with the team of Professor Hilde De Reuse at the Institut Pasteur, has shed light on key genes essential to the pathogenesis of Helicobacter pylori bacterium, which causes gastric infections. Like other microorganisms, this pathogen underwent genetic modifications through the course of evolution that enabled it to adapt to its environment.

Nickel is in fact the evolutionary key that allows the pathogen to survive the very acid conditions of the stomach. This metal is a cofactor of two essential proteins, one of which is urease, an enzyme that neutralizes gastric acid. Therefore, to colonize the stomach, the pathogen needs an efficient nickel transport system. By examining the bacterium's entire genome, the research team identified a new nickel transporter that appears to be essential for the metal acquisition. Once inside the bacterial cell, nickel regulates the synthesis of urease, which in turn neutralizes the acid from the stomach. This gene, along with a number of other genes encoding proteins involved in nickel homeostasis, has been acquired a long time ago by the bacterium via horizontal gene transfer.

Metals are often key players during bacterial pathogenesis. It is the case for many other microorganisms, including pathogenic strains of Escherichia coli, in which iron plays a major role in its ability to infect the host. However, the genetic reshuffling leading to metal homeostasis modifications in Helicobacter pylori and allowing it to adapt to the gastric environment seems to be quite unique.

Further genetic studies should enable researchers to identify other genes that have been dropped or acquired through evolution, giving microorganisms the characteristics they need to colonize their hosts and cause disease. In a way, we can think of these genes as messengers from the past. This research work will be used to develop strategies for fighting these infections.

###

To find out more:

The most recent publication of Professor Veyrier and his team: Characterization in Helicobacter pylori of a Nickel Transporter Essential for Colonization that was Acquired during Evolution by Gastric Helicobacter Species, PLOS Pathogens, Dec. 6, 2016

Media Contact

Frédéric Veyrier
[email protected]
450-687-5010 x8831
@U_INRS

http://www.inrs.ca/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

“Whisker” of crystal growing out from a crystalline front.

Scientists unravel mysterious mechanism behind “whisker crystal” growth

June 25, 2022
Smoke plume from the Riverside Fire on Mount Hood National Forest, Oregon, in September 2020

New study offers insight into past—and future—of west-side wildfires

June 25, 2022

Built infrastructure, hunting and climate change linked to huge migratory bird declines

June 25, 2022

Biofinder advances detection of extraterrestrial life

June 24, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    36 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirusUrbanizationZoology/Veterinary ScienceVaccineWeather/StormsVaccinesVirologyVehiclesUniversity of WashingtonViolence/CriminalsWeaponryUrogenital System

Recent Posts

  • Scientists unravel mysterious mechanism behind “whisker crystal” growth
  • New study offers insight into past—and future—of west-side wildfires
  • Built infrastructure, hunting and climate change linked to huge migratory bird declines
  • Biofinder advances detection of extraterrestrial life
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....