• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The evolutionary secret of H. pylori to survive in the stomach

Bioengineer by Bioengineer
December 20, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Professor Frédéric Veyrier's most recent research, in collaboration with the team of Professor Hilde De Reuse at the Institut Pasteur, has shed light on key genes essential to the pathogenesis of Helicobacter pylori bacterium, which causes gastric infections. Like other microorganisms, this pathogen underwent genetic modifications through the course of evolution that enabled it to adapt to its environment.

Nickel is in fact the evolutionary key that allows the pathogen to survive the very acid conditions of the stomach. This metal is a cofactor of two essential proteins, one of which is urease, an enzyme that neutralizes gastric acid. Therefore, to colonize the stomach, the pathogen needs an efficient nickel transport system. By examining the bacterium's entire genome, the research team identified a new nickel transporter that appears to be essential for the metal acquisition. Once inside the bacterial cell, nickel regulates the synthesis of urease, which in turn neutralizes the acid from the stomach. This gene, along with a number of other genes encoding proteins involved in nickel homeostasis, has been acquired a long time ago by the bacterium via horizontal gene transfer.

Metals are often key players during bacterial pathogenesis. It is the case for many other microorganisms, including pathogenic strains of Escherichia coli, in which iron plays a major role in its ability to infect the host. However, the genetic reshuffling leading to metal homeostasis modifications in Helicobacter pylori and allowing it to adapt to the gastric environment seems to be quite unique.

Further genetic studies should enable researchers to identify other genes that have been dropped or acquired through evolution, giving microorganisms the characteristics they need to colonize their hosts and cause disease. In a way, we can think of these genes as messengers from the past. This research work will be used to develop strategies for fighting these infections.

###

To find out more:

The most recent publication of Professor Veyrier and his team: Characterization in Helicobacter pylori of a Nickel Transporter Essential for Colonization that was Acquired during Evolution by Gastric Helicobacter Species, PLOS Pathogens, Dec. 6, 2016

Media Contact

Frédéric Veyrier
[email protected]
450-687-5010 x8831
@U_INRS

Accueil

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

How a Food Tax Shift Could Save Lives Without Raising Grocery Bills

October 24, 2025

Key Nervous System Components Found to Regulate Gastrointestinal Tumor Growth

October 24, 2025

Ruminococcus torques: A Breakthrough in Gut Health

October 24, 2025

Boosting Hip Fracture Care: Surgery and Mobility Insights

October 24, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1278 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    182 shares
    Share 73 Tweet 46
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How a Food Tax Shift Could Save Lives Without Raising Grocery Bills

Key Nervous System Components Found to Regulate Gastrointestinal Tumor Growth

Ruminococcus torques: A Breakthrough in Gut Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.