• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, September 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The evolutionary puzzle of the mammalian ear

Bioengineer by Bioengineer
May 27, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: (©Anne Le Mai?tre)

The vertebrate ear is a remarkable structure. Tightly encapsulated within the densest bone of the skeleton, it comprises the smallest elements of the vertebrate skeleton (auditory ossicles) and gives rise to several different senses: balance, posture control, gaze stabilization, and hearing. Nowhere else in the vertebrate skeleton are different functional units packed so close together and jointly embedded in its skeletal environment, which also hampers the independent evolution of the ear components.

Even the growth pattern of the ear deviates from that of the remaining skeleton: In humans and other mammals, the inner and middle ears achieve their final size already before or early after birth, which further challenges evolutionary change because postnatal development substantially contributes to anatomical differences between many mammals otherwise.

All this makes it puzzling how mammals, as a predominantly nocturnal group reliant on hearing, were able to occupy such a vast diversity of environments in the aquatic, terrestrial, subterranean, and aerial realms that require an amazing disparity not only in hearing abilities, but also in locomotion and posture. How could the different, tightly connected parts of the ear adapt independently to these diverse functional and environmental regimes?

A group of researchers around Philipp Mitteroecker from the University of Vienna proposed a new explanation for this evolutionary puzzle. Despite its similar function, the ear is composed of different bones in mammals, birds, and reptiles. In birds and reptiles, the lower jaw and its joint are composed of multiple bones, and they have a single auditory ossicle that transmits the sound. Extant mammals, by contrast, have three ossicles (malleus, incus, stapes) and one ectotympanic bone, supporting the tympanic membrane, all of which are separate from the jaw. This evolutionary transformation of the primary jaw joint into the mammalian ear ossicles is one of the most iconic transitions in vertebrate evolution, but it is not clear why this complex transition has happened.

The Austrian research team proposed that this substantial evolutionary change of mammalian ear anatomy has – in addition to any direct enhancements of mastication and hearing – also increased the “evolvability” (capacity for adaptive evolution) of the ear and its associated sensory functions. The incorporation of the bones of the primary jaw joint into the ear has considerably increased the genetic, regulatory, and developmental complexity of the mammalian ear. This increase in the number of genetic and developmental factors, in turn, has increased the evolutionary degrees of freedom for an independent adaptation of the different functional units of the ear: the number of genetic and developmental “knobs” for natural selection to turn.

They suggest that despite the tight spatial entanglement of functional ear components, the increased evolvability of the mammalian ear may have contributed to the evolutionary success and adaptive diversification of mammals in the vast diversity of ecological and behavioral niches observable today. In their article, they show that mammals, as compared to birds, were indeed able to evolve a much wider morphological and functional diversity, including numerous evolutionary “novelties”, even though birds are more diverse in species number than mammals.

###

Publication in Evolutionary Biology

Anne Le Maître, Nicole D.S. Grunstra, Cathrin Pfaff, Philipp Mitteroecker

“Evolution of the mammalian ear: An evolvability hypothesis”

Media Contact
Philipp Mitteroecker
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s11692-020-09502-0

Tags: BiologyEvolutionHearing/Speech
Share12Tweet8Share2ShareShareShare2

Related Posts

Molecular desorption from a microbubble under ultrasound irradiation.

Unveiling the science of ultrasound-driven microbubble desorption

September 21, 2023
icare logo

Texas Biomed launches new International Center for the Advancement of Research & Education

September 20, 2023

Only 1% of US kids who are obese in elementary school transition to a healthy weight within two years, although 1 in 4 overweight children progress to a healthy weight range

September 20, 2023

NIH awards $3.1 million to study human mitochondrial disorders

September 20, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    58 shares
    Share 23 Tweet 15
  • University of South Florida scientist: Barnacles may help reveal location of lost Malaysia Airlines flight MH370

    46 shares
    Share 18 Tweet 12
  • Lithuanian invention at the forefront of solar technology breakthrough

    41 shares
    Share 16 Tweet 10
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Topological materials open a new pathway for exploring spin hall materials

Warming up! 30 years of fusion-energy research at EPFL

Evaluating the shear viscosity of different water models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In