• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The energy implications of organic radical polymers

Bioengineer by Bioengineer
January 28, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New technology could change the way we charge everything from phones to electric vehicles

IMAGE

Credit: Texas A&M University College of Engineering


Texas A&M University professor Dr. Jodie L. Lutkenhaus is one step closer to realizing her goal of creating a battery made entirely of polymers, which has the potential to charge and discharge much faster than traditional batteries. Lutkenhaus, an associate professor in the Artie McFerrin Department of Chemical Engineering, has detailed her most recent findings on these polymers in a paper in Nature Materials.

A major hurdle to creating a metal-free, 100-percent polymer battery is finding a polymer that is electrochemically active — meaning it has to be able to store and exchange electrons. Lutkenhaus, along with a team of researchers including doctoral candidate Shaoyang Wang, think that the organic radical polymers will do the trick. Owing to their chemical structure, organic radical polymers are very stable and reactive. They have a single electron on the radical group, and this unpaired electron allows rapid charge transfer in these polymers during redox reactions.

According to Lutkenhaus, the main appeal of this class of polymer lies in the speed of the reaction. “These polymers are very promising for batteries because they can charge and discharge way faster than any common battery in a phone or similar device. This rapid charging could dramatically change the way electric vehicles are used today.”

The redox-active properties of organic radical polymers have been known for some time. However, prior to this research the exact mechanism by which electrons and ions are transported through the polymer had not been described. In part, the scale and speed at which these reactions take place make it difficult to capture reliable data. However, Lutkenhaus and her team were able to capture incredibly detailed measurements using a specialized device, an electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D).

The use of an EQCM-D is actually quite simple, but it operates on tremendously small scales. Lutkenhaus explained the experimental setup: “As we charge and discharge the polymer we are actually weighing it, so we know exactly how much it weighs even down to nanogram accuracy. The device is so sensitive that we can measure ions going in and out of the organic radical polymer.”

The results of the EQCM-D analysis led to somewhat unexpected results. Before this research the consensus was that only anions were transported in this process. However, the results show that lithium ions are transported as well. Further, the behavior and transport of the ions seems to be more dependent on the electrolyte than the polymer itself.

With this deeper understanding of the underlying processes, Lutkenhaus plans to take a closer look at the electrolyte polymer interactions.

###

Media Contact
Amy Halbert
[email protected]
979-458-4243

Original Source

https://engineering.tamu.edu/news/2018/11/the-energy-implications-of-organic-radical-polymers.html

Related Journal Article

http://dx.doi.org/10.1038/s41563-018-0215-1

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Blue Catfish Sexual Development: Hormones and Genes

November 20, 2025
Strain and Formula Impact Cronobacter Sakazakii Acid Resistance

Strain and Formula Impact Cronobacter Sakazakii Acid Resistance

November 20, 2025

Unveiling Trihelix Factors’ Role in Cucumber Stress

November 20, 2025

Sodium Selenite and Probiotics Enhance Alfalfa Silage Quality

November 20, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Behavioral Devaluation Linked to Local Dopamine Resistance

Blue Catfish Sexual Development: Hormones and Genes

Assessing Input Efficiency in South Africa’s Fruit Industry

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.