• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The effects of wildfires and spruce beetle outbreaks on forest temperatures

Bioengineer by Bioengineer
October 21, 2020
in Biology
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr. Carlson

Results from a study published in the Journal of Biogeography indicate that wildfires may play a role in accelerating climate-driven species changes in mountain forests by compounding regional warming trends.

The study examined temperatures within forests in a region of Colorado that has experienced wildfires and spruce beetle outbreaks within the last 10 to 15 years. Researchers used a network of sensors to record temperatures for a full year in burned and beetle-impacted areas.

Burned areas were warmer than unburned forest. Conversely, canopy loss (the upper layer of trees) in unburned, beetle-killed forests resulted in slight cooling. This difference may be attributed to differing effects of each disturbance type on understory cover and residual canopy.

“We tend to assume that disturbances are going to catalyze climate change-driven forest declines, but we found that the type and severity of the disturbance matters,” said lead author Amanda Carlson, PhD, of Colorado State University. “Elevated temperatures in burned forests could indicate that trees will have a more difficult time re-establishing, but the fact that we did not observe amplified warming in beetle-killed stands could indicate that forests will be much more resilient to that type of disturbance.”

###

Media Contact
Wiley Newsroom
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/jbi.13994

Tags: Climate ChangeEarth ScienceEcology/EnvironmentEnvironmental HealthForestryPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Think you can outsmart an island fox? Think again!

August 21, 2025
blank

California’s dwarf Channel Island foxes have relatively larger brains than their bigger mainland gray fox cousins, revealing unique island-driven evolution

August 21, 2025

Why Do Some People Age Faster? Study Identifies Key Genes Involved

August 21, 2025

Tidal Forces Spur the Rise of Urban Civilization in Southern Mesopotamia

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Fat-Trapping Microbeads Enable Drug-Free Weight Loss in Rats, Study Reveals

New Study Uncovers Key Genes That Suppress Blood Cancer Progression

Electron Flow Matching Advances Reaction Mechanism Prediction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.