• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, September 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The clams that fell behind, and what they can tell us about evolution and extinction

Bioengineer by Bioengineer
May 31, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Every so often, life on Earth steps onto a nearly empty playing field and faces a spectacular opportunity. Something major changes—in the atmosphere or in the oceans, or in the organisms themselves —and the existing species begin to branch out into a brand-new world. Scientists are fascinated by this process, because it’s a unique look into evolution at pivotal moments in the history of life.

Anomalodonta and vanuxemia

Credit: Images courtesy Stewart Edie

Every so often, life on Earth steps onto a nearly empty playing field and faces a spectacular opportunity. Something major changes—in the atmosphere or in the oceans, or in the organisms themselves —and the existing species begin to branch out into a brand-new world. Scientists are fascinated by this process, because it’s a unique look into evolution at pivotal moments in the history of life.

A new study led by scientists with the University of Chicago examined how bivalves—the group that includes clams, mussels, scallops, and oysters—evolved among many others in the period of rapid evolution known as the Cambrian Explosion. The team found that though many other lineages burst into action and quickly evolved a wide variety of forms and functions, the bivalves lagged behind, perhaps because they took too long to evolve a particular adaptation they needed to flourish.

The study has implications for how we understand evolution and the impact of extinctions, the scientists said.

Shell and high water

A little more than 500 million years ago, the diversity of life on Earth suddenly exploded. Known as the Cambrian Explosion, this dramatic episode saw the emergence of many forms of life that persist today.

Among these were the bivalves—hard-twin-shelled organisms that live on the seafloor. A group of researchers decided to catalogue the rise of the bivalves to see how they fared in a nearly empty sea with a brand-new body design.

The research team, including Stewart Edie (PhD’18) with the Smithsonian’s National Museum of Natural History, Katie Collins with the U.K.’s Natural History Museum, and Sharon Zhou, a fourth-year undergraduate student at UChicago, went through the fossil record and painstakingly examined each known fossil species to get a picture of how the bivalves evolved new forms and ways of living—such as burrowing into the seafloor sediment versus attaching themselves to rocks. “For example, you can look at the shape of the shell and tell if they are likely digging into the seafloor sediment, because they become long and thin for burrowing,” explained Zhou.

They pieced together a comprehensive picture of the bivalves’ evolution—and were surprised.

“You might think that they would take immediate advantage of this new body design and go on to fame and biological fortune,” said David Jablonski, the William R. Kenan Jr. Distinguished Service Professor of Geophysical Sciences at UChicago and co-corresponding author on the paper. “But they didn’t.”

Instead, the bivalves branched out slowly compared to other groups that originated at the time. “It’s kind of amazing they made it through at all,” said Jablonski. “Even after they got their act together and began to diversify about 40 million years in, they never showed a true explosion in species or ecologies.”

One thing they wanted to check was whether this could be a false impression caused by some gap in the fossil record. Collins explained that fossils from that era are difficult to find in the first place—many rocks have since been metamorphized into other rock types—and also hard to identify where they do exist.

However, Edie and Zhou ran a series of tests and computer simulations and found this was unlikely to have affected the results: “We’d need a really extreme simulation to change the pattern we see in the rocks,” said Edie. “It’s much more likely that this slow start was the real story.”

It’s not clear why the bivalves lagged, but one possibility is that they hadn’t yet evolved a key organ that allowed them to take off: an enlarged gill to filter out plankton from water, as so many bivalves do today. By the time they came up with this adaptation, the seafloor was much more crowded. “If you show up early to the dance floor, you can do whatever you want, but if you show up late, it restricts the range of moves,” Jablonski said.

But the bivalves do survive and even thrive today, despite their lag. “It tells us there’s more than one pathway to success, even when you are starting at the very beginning of multicellular life,” said Jablonski.

Scientists are particularly interested in cataloguing these accounts of evolution, because they can suggest how life adapts and radiates in the wake of major disruptions or extinctions. The researchers plan to look at bivalves’ response to extinctions over time and see if similar patterns emerge.

“For all kinds of reasons, we want to understand what it means to repopulate after an extinction—for example, what could happen as a result of the major extinction we are undergoing right now,” said Jablonski.

The study was also a learning experience for Zhou, who is an undergraduate at the University of Chicago.

Zhou intended to major in math, but was hooked on evolutionary biology after she took a course to fulfill UChicago’s Core requirements in the sciences. She spent several years working in Jablonski’s lab, and now plans to attend graduate school in the subject.

“How life happens on earth—to me, that is one of the greatest mysteries we can try to solve,” said Zhou.

UChicago postdoctoral researcher Nicholas Crouch was also a co-author on the paper.



Journal

Biology Letters

Article Title

Cambrian origin but no early burst in functional disparity for Class Bivalvia

Article Publication Date

30-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Fossil shell

A turtle time capsule: DNA found in ancient shell

September 28, 2023
NEOSEPSIS team

Ireland-Uganda partnership awarded €1 million funding to tackle sepsis in babies

September 28, 2023

Watch how hammerhead sharks get their hammer

September 28, 2023

Researchers create first-ever map of a single animal’s early visual system

September 28, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Accounting for oxygen in modeling coastal ecosystems

Low-income communities face dual barriers to maternity care access

Innovative approach unveiled: Boosting terpenoid bioproduction via remodeling of isoprene pyrophosphate metabolism

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In