• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

The cell copying machine: How daughters look like their mothers

Bioengineer by Bioengineer
April 23, 2016
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Tiny structures in our cells, called centrioles, control both cell division and motility. The number of these structures is highly monitored, with deviations causing infertility, microcephaly and accelerating cancer. But how do mother cells know they provide the right number of centrioles to their daughters? They do it by copying those structures only once, so that each daughter inherits one of the copies. A research team, from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Monica Bettencourt-Dias uncovered the mechanism by which the mother copies only once before it distributes it to the two daughters. This study is now published in the latest issue of the scientific journal Current Biology*.

When a mother cell divides in two daughters, its structures need to duplicate, so that each daughter cell gets the right complement and looks like its mother. While much is known about the regulation of the duplication of the genetic material, it was a mystery how centrioles are copied only once. Bettencourt Dias' team tackled this question by focusing on the key molecular trigger of centriole formation, a protein called PLK4, which they identified recently. "We found that the trigger only works just before centrioles are made. Something in the cell was inhibiting the trigger at other time points, ensuring the right copy number of centrioles was formed at the right time", says Zitouni Sihem, co-first author of this study.

The research team, in collaboration with scientists from Germany, USA, Japan and France, set out to investigate what was inhibiting this trigger protein at other time points. "We discovered that a key protein complex that sets the cell division clock, CDK1, inhibits PLK4 activity by kidnapping its partner (STIL). In consequence, PLK4 can only start forming centrioles at a particular time of the cell cycle, when CDK1 is not there", explains Zitouni Sihem. The centriole formation machinery is thus regulated by the cell cycle clock, ensuring daughters look like their mothers.

Mónica Bettencourt-Dias adds: "I am very proud of this paper, we knew the cell cycle clock and centriole formation had to be linked- otherwise how would cells ensure the right copy number is made? This is the first link showing how the cell cycle machinery regulates the trigger of centriole biogenesis, ensuring the right number of centrioles is formed at the right time, which is critical for homeostasis."

###

This study was carried out in collaboration with researchers at the European Molecular Biology Laboratory (Germany), National Institute of Genetics (Japan), Johns Hopkins University School of medicine (USA) and Institut de Biologie de l'ENS (IBENS), Inserm and CNRS (France). This research was funded by Fundacao para a Ciencia e a Tecnologia (FCT, Portugal), European Molecular Biology Organization (EMBO) and European Research Council (ERC).

* Zitouni, S., Francia, M. E., Leal, F., Gouveia, S. M., Nabais, C., Duarte, P., Gilberto, S., Brito, D., Moyer, T., Kandels-Lewis, S., Ohta, M., Kitagawa, D., Holland, A. J., Karsenti, E., Lorca, T., Lince-Faria, M., Bettencourt-Dias, M. (2016) CDK1 prevents unscheduled PLK4-STIL complex 1 assembly in centriole biogenesis. Current Biology. doi: 10.1016/j.cub.2016.03.055.

Notes to Editors:

The Instituto Gulbenkian de Ciencia (IGC) is a leading life science research centre in Portugal. Established by the Calouste Gulbenkian Foundation, the IGC is devoted to biological and biomedical research, and to graduate training. The IGC has minimal hierarchical structure, outstanding infrastructures, and an environment designed to encourage interactions and exploit synergies. The IGC PhD programmes are explicitly directed towards intellectual breadth, creativity, theory and independent scientific thought. The IGC has a dedicated outreach and public engagement in science programme. More information at www.igc.gulbenkian.pt.

Further Information:

Fundação Calouste Gulbenkian

Instituto Gulbenkian de Ciencia

Cell Cycle Regulation @ Instituto Gulbenkian de Ciencia

Cell Cycle Regulation website

Media Contact

Vanessa Borges
[email protected]
@IGCiencia

http://www.igc.gulbenkian.pt

The post The cell copying machine: How daughters look like their mothers appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.