• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Testing cells for cancer drug resistance

Bioengineer by Bioengineer
October 26, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Michael Schwettmann

Biophysicists at Ruhr-Universität Bochum (RUB) have demonstrated that Raman microscopy can be used to detect the resistance of tumour cells to cancer drugs. Unlike conventional approaches, this method does not require any antibodies or markers. It detects the response of cells to administered drugs and therefore could determine the effect of drugs in preclinical studies.

The team headed by Professor Klaus Gerwert and Dr. Samir El-Mashtoly from the RUB Department of Biophysics, in collaboration with Professor Stephan Hahn from the RUB Department of Molecular GI-Oncology, published an article on their work in the journal Scientific Reports on 15 October 2018.

Drug-induced protein changes

For their study, the researchers used the drugs erlotinib and osimertinib, which are available under the trade names Tarceva and Tagrisso, respectively, and have been approved for lung cancer therapy. They inhibit cell growth by binding to specific proteins on the cell surface. However, patients develop resistance to the drugs in the course of therapy, because of protein changes in cancer cells.

"In order to understand how such resistance develops, we have to be able to better analyse the drugs' mechanism of action," says Klaus Gerwert. "Raman microscopy can help to develop better cancer drugs," adds Samir El-Mashtoly. "It would be a great advantage if we could predict if a drug causes resistance in preclinical studies."

Comparing efficacy in mutated and non-mutated cells

In recent years, Samir El-Mashtoly and Klaus Gerwert have developed novel marker-free methods of Raman spectroscopy to determine the efficacy and distribution of drugs in cancer cells. For their current study, they mutated proteins in cancer cell lines, in order to simulate protein changes that occur in patients with drug resistance.

To date, it had been challenging to conduct such experiments in vitro – i.e. in a cell culture; rather, they had to be performed with patients. "Consequently, the analysis of drug resistance can now be significantly facilitated," explains Klaus Gerwert. Using Raman microscopy, the researchers compared the efficacy of the drugs erlotinib and osimertinib in mutated and non-mutated cells.

Raman microscopy can be used to generate a spectroscopic fingerprint of a cell's molecular composition. A comparison of the spectra before and after the drug treatment provides an indication of the chemical processes triggered by the drug.

Resistance only in mutated cells

Erlotinib and osimertinib remained ineffective in cells with mutated proteins, while the drugs showed an effect in the non-mutated cancer cells. These results match the clinical observations that patients in whom certain proteins have changed in the course of therapy no longer respond to the drugs. Accordingly, the same resistance was detected in cells that had only been observed in patients before.

In conventional tests, the efficacy of drugs is analysed indirectly using markers that are attached to the drug or its target. "Using this approach, the response of one single protein, i.e. the marker, is analysed," explains Klaus Gerwert. "Raman microscopy, on the other hand, monitors an integral cell response; therefore, it is one of the methods that can test the efficacy of drugs in vitro."

###

Media Contact

Samir F. El-Mashtoly
[email protected]
49-234-322-5701
@ruhrunibochum

http://www.ruhr-uni-bochum.de

Original Source

http://news.rub.de/english/press-releases/2018-10-26-raman-microscopy-testing-cells-cancer-drug-resistance http://dx.doi.org/10.1038/s41598-018-33682-7

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Cancer Immunotherapy by Targeting DNA Repair

December 3, 2025

Vimentin-Positive Tumor Cells: Advances and Clinical Impact

December 2, 2025

APC Variant Linked to Familial Adenomatous Polyposis

December 2, 2025

Neuroleukemiosis: Imaging Insights in Pediatric AML Relapse

December 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.