• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Team undertakes study of two-dimensional transition metal chalcogenides

Bioengineer by Bioengineer
December 9, 2022
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two-dimensional materials, like transition metal dichalcogenide, have applications in public health because of their large surface area and high surface sensitivities, along with their unique electrical, optical, and electrochemical properties. A research team has undertaken a review study of methods used to modulate the properties of two-dimensional transition metal dichalcogenide (TMD). These methods have important biomedical applications, including biosensing.

The property modulations of two-dimensional transition metal chalcogenides

Credit: Nano Research Energy, Tsinghua University Press

Two-dimensional materials, like transition metal dichalcogenide, have applications in public health because of their large surface area and high surface sensitivities, along with their unique electrical, optical, and electrochemical properties. A research team has undertaken a review study of methods used to modulate the properties of two-dimensional transition metal dichalcogenide (TMD). These methods have important biomedical applications, including biosensing.

 

The team’s work is published in the journal Nano Research Energy on November 23, 2022.

 

The team’s goal is to present a comprehensive summarization of this promising field and show challenges and opportunities available in this research area. “In this review, we focus on the state-of-the-art methods to modulate properties of two-dimensional TMD and their applications in biosensing. In particular, we thoroughly discuss the structure, intrinsic properties, property modulation methods, and biosensing applications of TMD,” said Yu Lei, an assistant professor at the Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University.

 

Since graphene was discovered in 2004, two-dimensional materials, such as TMD, have attracted significant attention. Because of its unique properties, two-dimensional TMD can serve as the atomically thin platforms for energy storage and conversion, photoelectric conversion, catalysis, and biosensing. TMD also displays a wide band structure and has unusual optical properties. Yet another benefit of two-dimensional TMD is that it can be produced in large quantities at a low cost.

 

In public health, reliable and affordable in vitro and in vivo detection of biomolecules is essential for disease prevention and diagnosis. Especially during the COVID-19 pandemic, people have suffered not only from the physical disease, but also from the psychological problems related to extensive exposure to stress. Extensive stress can result in abnormal levels in biomarkers such as serotonin, dopamine, cortisol, and epinephrine. So, it is essential that scientists find non-invasive ways to monitor these biomarkers in body fluids, such as sweat, tears, and saliva. In order for health care professionals to quickly and accurately assess a person’s stress and diagnose psychological disease, biosensors are of significant importance in the diagnostics, environmental monitoring, and forensic industries.

 

The team reviewed the use of two-dimensional TMD as the functional material for biosensing, the approaches to modulate the properties of TMD, and different types of TMD-based biosensors including electric, optical, and electrochemical sensors. “Public health study is always a major task in preventing, diagnosing, and fighting off the diseases. Developing ultrasensitive and selective biosensors is critical for diseases prevention and diagnosing,” said Bilu Liu, an associate professor and a principal investigator at Shenzhen Geim Graphene Center, Shenzhen International Graduate School, Tsinghua University.

 

Two-dimensional TMD is a very sensitive platform for biosensing. These two-dimensional TMD based electrical/optical/electrochemical sensors have been readily used for biosensors ranging from small ions and molecules, such as Ca2+, H+, H2O2, NO2, NH3, to biomolecules such as dopamine and cortisol, that are related to central nervous disease, and all the way to molecule complexities, such as bacteria, virus, and protein.

 

The research team determined that despite the remarkable potentials, many challenges related to TMD-based biosensors still need to be solved before they can make a real impact. They suggest several possible research directions. The team recommends that the feedback loop assisted by machine learning be used to reduce the testing time needed to build the database needed for finding the proper biomolecules and TMD pairs. Their second recommendation is the use of a feedback loop assisted by machine learning to achieve the on-demand property modulation and biomolecules/TMD database. Knowing that TMD-based composites exhibit excellent performance when constructed into devices, their third recommendation is that surface modifications, such as defects and vacancies, be adopted to improve the activity of the TMD-based composites. Their last recommendation is that low-cost manufacturing methods at low temperature be developed to prepare TMD. The current chemical vapor deposition method used to prepare TMD can lead to cracks and wrinkles. A low-cost, low-temperature method would improve the quality of the films. “As the key technical issues are solved, the devices based on two-dimensional TMD will be the overarching candidates for the new healthcare technologies,” said Lei.

 

The Tsinghua University team includes Yichao Bai and Linxuan Sun, and Yu Lei from the Institute of Materials Research, Tsinghua Shenzhen International Graduate School and the Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School; along with Qiangmin Yu and Bilu Liu from the Institute of Materials Research, Tsinghua Shenzhen International Graduate School, and the Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School.

 

This research is funded by the National Natural Science Foundation of China, the National Science Fund for Distinguished Young Scholars, Guangdong Innovative and Entrepreneurial Research Team Program, the Shenzhen Basic Research Project, the Scientific Research Start-up Funds at Tsinghua Shenzhen International Graduate School, and Shenzhen Basic Research Project.

 

##

 

About Nano Research Energy 

 

Nano Research Energy is launched by Tsinghua University Press, aiming at being an international, open-access and interdisciplinary journal. We will publish research on cutting-edge advanced nanomaterials and nanotechnology for energy. It is dedicated to exploring various aspects of energy-related research that utilizes nanomaterials and nanotechnology, including but not limited to energy generation, conversion, storage, conservation, clean energy, etc. Nano Research Energy will publish four types of manuscripts, that is, Communications, Research Articles, Reviews, and Perspectives in an open-access form.

 

About SciOpen 

 

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

 



Journal

Nano Research Energy

DOI

10.26599/NRE.2022.9120043

Article Title

Biomolecule capturing and sensing on 2D transition metal dichalcogenide canvas

Article Publication Date

23-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Katerina Mastovska

Dr. Katerina Mastovska named AOAC INTERNATIONAL Deputy Executive Director and Chief Science Officer

January 27, 2023
magnetar eruption

Volcano-like rupture could have caused magnetar slowdown

January 27, 2023

Stability of perovskite solar cells reaches next milestone

January 27, 2023

From AI software to surgical robots

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In