• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Team stabilizes nickel-rich cathodes for use in long-life lithium-ion batteries

Bioengineer by Bioengineer
January 5, 2023
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nickel-rich layered cathodes are promising candidates for the next-generation high-energy lithium-ion batteries because of their high energy density and competitive cost. However, with long-term operation, these cathodes suffer from rapid capacity fading. A research team from East China University of Science and Technology has created a simple, one-step dual-modification strategy to restrain these side reactions that occur and enhance the cathode’s structural stability, to meet the commercial requirements of nickel-rich cathodes.

The Ti-NCM83@LYO cathode for lithium-ion batteries with enhanced electrochemical performance

Credit: Hanwen Zheng, East China University of Science and Technology

Nickel-rich layered cathodes are promising candidates for the next-generation high-energy lithium-ion batteries because of their high energy density and competitive cost. However, with long-term operation, these cathodes suffer from rapid capacity fading. A research team from East China University of Science and Technology has created a simple, one-step dual-modification strategy to restrain these side reactions that occur and enhance the cathode’s structural stability, to meet the commercial requirements of nickel-rich cathodes.

 

The team’s findings are published in the journal Particuology on January 5, 2023.

 

Lithium-ion batteries with high energy density are urgently needed to meet the increased demand of electronic devices and vehicles. At this point in time, the use of lithium-ion batteries is mainly constrained by the limited specific capacity of their cathode material. Nickel-rich layered cathodes always suffer from rapid capacity fading because of the structural and interfacial instability that occurs with long-term operation.

 

In an effort to solve these problems, scientists have used tactics such as surface coating and elements doping with the cathode materials. But single modification processes cannot solve the structural and interfacial instability at the same time. The single element doping strategy fails to prevent the cathode/electrolyte reaction, while the coating materials typically exhibit poor lithium-ion conductivity. This issue increases the interfacial impedance and decreases the specific capacity.

 

A high-efficiency dual-modification was needed in order to achieve advanced nickel-rich oxides with high specific capacity and long-cycling life. The research team’s work provides a simple, one-step dual-modification strategy that limits the interfacial parasitic side reactions and enhances the structural stability, while meeting the commercial requirements of nickel-rich cathodes. Their co-modified cathode displays superior electrochemical performance with excellent long-term cycling stability.

 

The team synthesized the titanium-doped and lithium yttrium dioxide-coated (LiYO2) nickel-rich layered cathode using a simple one-step sintering strategy. The sintering process uses heat and pressure to form a solid mass of material. This strategy developed by the team significantly restrains the interfacial parasitic side reactions, while at the same time enhancing the cathode’s structural stability.

 

The team used X-ray diffraction to analyze the crystallographic structure of their cathodes. They researched the morphologies of the cathodes using scanning electron microscopy. Transmission electron microscopy was applied to characterize the hyperfine structure and elements distribution, and they used X-ray photoelectron spectra to study the surface element compositions and valence state. Their results showed that their dual-modified cathode material had an improved capacity retention of 96.3 percent after 100 cycles and 86.8 percent after 500 cycles, much higher than the unmodified cathode materials.

 

The LiYO2 coating layer acting as a physical barrier significantly restrains the interfacial parasitic side reactions and the dissolution of transition metal ions. This enhances the cathode–electrolyte interface stability. The robust titanium-oxygen bonds effectively stabilize the lattice oxygen as well as alleviate the lithium/nickel disorder. The team’s dual-modified strategy results in a cathode material with faster lithium-ion diffusion rate and outstanding electrochemical stability.

 

Looking ahead the team hopes to develop their strategy for large-scale production. “In the next step, we would like to apply this dual modification strategy to industrial large-scale production, taking both cathode materials with stable interface/crystal structure and excellent electrochemical performance,” said Hao Jiang, a professor at East China University of Science and Technology.  At the same time, the team will explore the consistency after amplification to ensure the uniform doping and coating effect. “Moreover, the stability under extremely harsh conditions will be studied to ensure the safety of the material and facilitate its commercial application,” said Jiang.

 

The research team includes Hanwen Zheng, Zhihong Wang, Ling Chen, Hao Jiang, and Chunzhong Li from the East China University of Science and Technology.

 

This work is funded by the National Natural Science Foundation of China, the Innovation Program of Shanghai Municipal Education Commission, and the Fundamental Research Funds for the Central Universities.

 

Particuology (IF=3.251) is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. Topics are broadly relevant to the production of materials, pharmaceuticals and food, the conversion of energy resources, and protection of the environment. For more information, please visit: https://www.journals.elsevier.com/particuology.



Journal

Particuology

DOI

10.1016/j.partic.2022.12.003

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Integrating trace Ti-doping and LiYO2-coating to stabilize Ni-rich cathodes for lithium-ion batteries

Article Publication Date

5-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

FAIRY flying robot

A fairy-like robot flies by the power of wind and light

January 30, 2023
Sampling for invasive ants on St Helena

UK’s Overseas Territories at ongoing risk from wide range of invasive species

January 30, 2023

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

January 28, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

A fairy-like robot flies by the power of wind and light

UK’s Overseas Territories at ongoing risk from wide range of invasive species

World-first guidelines created to help prevent heart complications in children during cancer treatment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In